cosmological parameters estimation Perturbation theory challenge for

Yukawa Institute of Theoretical Physics PTchat@Kyoto April 8

Ken Osato

Institut d'Astrophysique de Paris In collaboration with

Takahiro Nishimichi (YITP), Francis Bernardeau (IAP/IPhT), and Atushi Taruya (YITP)

Based on PRD 99, 063530 (2019)

- The matter distribution, *large-scale structures*, reflects
- underlying physics (modified gravity, massive neutrinos...)
- This information is imprinted on **power spectrum** and it can be
- measured from spectroscopic surveys of galaxy distribution.

- The matter distribution, *large-scale structures*, reflects
- underlying physics (modified gravity, massive neutrinos...)
- This information is imprinted on **power spectrum** and it can be
- measured from spectroscopic surveys of galaxy distribution.

- The matter distribution, *large-scale structures*, reflects
- underlying physics (modified gravity, massive neutrinos...)
- This information is imprinted on **power spectrum** and it can be
- measured from spectroscopic surveys of galaxy distribution.

- The matter distribution, *large-scale structures*, reflects
- underlying physics (modified gravity, massive neutrinos...)
- This information is imprinted on **power spectrum** and it can be
- measured from spectroscopic surveys of galaxy distribution.

Modeling of LSS at nonlinear regimes

<u>N-body simulations</u>

Matter distribution is discretized as particles. The evolution is governed by Newtonian gravity.

Pros: Accurate down to resolution **Cons:** Computationally expensive Not suitable for MCMC

Perturbation theory (PT)

Based on single-stream approx., fluid equations are expanded with respect to density contrast.

Pros: Analytical and fast

Cons: The applicable range is limited to mildly nonlinear regime.

$$\delta(\mathbf{k}) = \sum_{n=1}^{\infty} D_{+}^{n} \delta^{(n)}(\mathbf{k})$$

$$\delta^{(n)}(\mathbf{k}) = \int \frac{d^{3}q_{1} \cdots d^{3}q_{n}}{(2\pi)^{3(n-1)}} \delta_{\mathrm{D}}(\mathbf{k} - \mathbf{q}_{1} - \cdots - \mathbf{q}_{n})$$

$$\times F_{\mathrm{sym}}^{(n)}(\mathbf{q}_{1}, \dots, \mathbf{q}_{n}) \delta_{0}(\mathbf{q}_{1}) \cdots \delta_{0}(\mathbf{q}_{n})$$

Bernardeau+ (2002)

PT Models

expansion gives reasonable predictions. expand fluid eqs. 2-loop level Widely used standard way to Standard Perturbation Theory (SPT) : $\delta^{(n)}(\mathbf{k}) = \int \frac{d^3 q_1 \cdots d^3 q_n}{(2\pi)^{3(n-1)}} \delta_{\mathrm{D}}(\mathbf{k} - \mathbf{q}_1 - \cdots - \mathbf{q}_n)$ $\delta(\mathbf{k}) = \sum D^n_+ \delta^{(n)}(\mathbf{k})$

 $\times F_{\rm sym}^{(n)}(\mathbf{q}_1,...,\mathbf{q}_n)\delta_0(\mathbf{q}_1)\cdots\delta_0(\mathbf{q}_n)$

Regularized Perturbation Theory (RegPT): Bernardeau+ (2008), Taruya+ (2012)

At high-k regime, the power spectrum damps as $e^{-\sigma_{\rm d}^2 k^2/2}$. Reorganizing SPT expansion with **propagator** (I-expansion)

The r.m.s. displacement can be a free parameter.

RegPT+

characterized by effective sound speed. Introducing counter terms to describe small-scale behavior (IR-resummed) Effective Field Theory (EFT) : Baumann+ (2012), Carrasco+ (2012)

LPT, closure, Time-RG, RPT, and more...

The sound speed is treated as free parameter.

 $-2(2\pi)c_{s(1)}^2\left(rac{k}{k_{
m NL}}
ight) P_{
m L}(k)$

but details are different for each method. There are many PT schemes proposed so far

Key question: which PT scheme performs better? but details are different for each method. There are many PT schemes proposed so far

Key question: which PT scheme performs better? but details are different for each method. There are many PT schemes proposed so far

- Is it applicable to smaller scales?
- How accurate in cosmological parameter estimation?
- Some models contain nuisance parameters but
- is it fair to compare just the smallest applicable scales?

Key question: which PT scheme performs better? but details are different for each method. There are many PT schemes proposed so far

- Is it applicable to smaller scales?
- How accurate in cosmological parameter estimation?
- Some models contain nuisance parameters but
- is it fair to compare just the smallest applicable scales?

End-to-end test in cosmological parameter inference Strategy

- **1. Generate initial condition**
- h Hubble parameter $\Omega_{
 m m}$ Matter density $A_{
 m s}$ Amplitude of scalar perturbation

Strategy

- End-to-end test in cosmological parameter inference
- 1. Generate initial condition
- h Hubble parameter
- $\Omega_{
 m m}$ Matter density
- $A_{
 m s}$ Amplitude of scalar perturbation
- 2. Run N-body sim. & measure power spectrum @ z = 1

Strategy

- End-to-end test in cosmological parameter inference
- 1. Generate initial condition

2. Run N-body sim. & measure

- h Hubble parameter
- $\Omega_{
 m m}$ Matter density
- S Amplitude of scalar perturbation
- 3. Infer cosmological params. with MCMC
- 2-loop level PT schemes of
- SPT, RegPT, RegPT+, EFT

End-to-end test in cosmological parameter inference Strategy

1. Generate initial condition

Can PT reproduce? Δ2_m Matter density

2. Run N-body sim. & measure power spectrum @ z = 1

Power spectrum

h Hubble parameter

Amplitude of scalar perturbation

3. Infer cosmological params. with MCMC

2-loop level PT schemes of

SPT, RegPT, RegPT+, EFT Euclid-like survey

 $V = 8 (h^{-1} \,\mathrm{Gpc})^3$

Results: Estimated Parameters

- Inferred parameters normalized by fiducial values
- for three cosmological parameters as a function of k_{max}. $\log L(\theta | \hat{P}) = -\hat{-}$ $\sum_{ij} (\hat{P}(k_i) - P(k_i; \theta))(C^{-1})_{ij}(\hat{P}(k_j) - P(k_j; \theta))$

 $\delta(h/h^{
m fid})$

Results: 2D Contours

<u>RegPT</u>

No nuisance param.)

IR-resummed EFT

z = 1.0, k_{max} = 0.21 h Mpc⁻¹

FoM & FoB

summary quantities Introduce goodness of fit and parameter bias as

Correlation matrix: estimated from MCMC chains

$$S_{\alpha\beta} = \frac{1}{N-1} \sum_{k}^{N} (\theta_{\alpha}^{k} - \bar{\theta}_{\alpha})(\theta_{\beta}^{k} - \bar{\theta}_{\beta}) \quad \begin{array}{l} \text{Parameter vector} \\ \theta = (h, \Omega_{\text{m}}, A_{\text{s}}, \dots \end{array}$$

Figure of Merit (FoM): goodness of fit FoM = $\left[\det \tilde{S}\right]^{-\frac{1}{2}} \sim (Volume of 1-\sigma C.L.)^{-1}$ 02

marginalized for nuisance params.

igure of Bias (FoB): parameter bias
FoB =
$$\left[(\bar{\theta}_{\alpha} - \theta_{\alpha}^{\text{fid.}}) \tilde{S}_{\alpha\beta} (\bar{\theta}_{\beta} - \theta_{\beta}^{\text{fid.}}) \right]^{-\frac{1}{2}}$$

 θ_2 (

 θ_1

normalized by variances.

 θ_1

Distance between true and estimated params.

Correlation Coefficient Sab

Correlation coefficient: $R_{\alpha\beta} = -$

$R_{lphaeta} = \pm 1$ Positive/Negative correlation $R_{lphaeta} = 0$ No correlation No correlation $\sqrt{S_{lpha lpha} S_{eta eta}}$

RegPT+

$\sigma_{\rm d}$	$A_{ m s}$	$\Omega'_{ m m}$	\dot{h}	
0.25	-0.98	-0.48		h -
0.35	0.34		-0.49	$\Omega_{ m m}$ -
-0.27		0.39	-0.99	$A_{\rm s}$ -
	-0.30	0.14	0.31	$\sigma_{\rm d}$ -

R-resummed EFT

	h^{-}		$A_{\rm s}$ -	×1	^v 2	M
\dot{h}		0.24	-0.97	-0.71	0.55	-0.26
$\Omega_{ m m}$	0.12		-0.15	-0.63	0.46	-0.09
$A_{\rm s}$	-0.98	-0.12		0.55	-0.39	0.21
α_1	-0.71	-0.54	0.60		-0.91	0.36
α_2	0.59	0.40	-0.48	-0.94		-0.52
<u></u>	-0.14	-0.04	0.12	0.19	-0.28	

Correlation Coefficient

Correlation coefficient: $R_{\alpha\beta} = -$

 $\mathfrak{I}_{lphaeta}$

 $R_{\alpha\beta} = \pm 1$ Positive/Negative correlation $R_{\alpha\beta} = 0$ No correlation No correlation $\sqrt{S_{\alpha\alpha}S_{\beta\beta}}$

RegPT+

IR-resummed EFT

0.35	0.34		-0.49	$\Omega_{ m m}$ -
-0.27		0.39	-0.99	$A_{\rm s}$ -
	-0.30	0.14	0.31	$\sigma_{ m d}$ -

-0.04	0.40	-0.54	-0.12		0.24	$2_{\rm m}$ -
0.12	-0.48	0.60		-0.15	-0.97	$A_{ m s}$ -
0.19	-0.94		0.55	-0.63	-0.71	α_1
-0.28		-0.91	-0.39	0.46	0.55	α_2 -
	-0.52	0.36	0.21	-0.09	-0.26	\square

degrades constraints!

Strong correlation with cosmological parameters

Summary

real-space matter power spectrum. in the analysis of cosmological parameter inference with End-to-end test of PT schemes (SPT, RegPT, RegPT+, EFT)

- Best FoB model : IR-resummed EFT (3 nuisance params.) but weak constraining power
- Best FoM model : SPT / RegPT (no nuisance param.)

but biased parameter estimation

Reasonable choice : RegPT+ (1 nuisance param.)

works well up to even $k_{max} \sim 0.33 h \text{ Mpc}^{-1}$

suitable for MCMC analysis realistic modeling of power spectrum and fast calculation Prospects: Incorporating RSD and galaxy bias for more