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Introduction
Observed large-scale structure generally appears distorted 

Line-of-sight position Actual position

In galaxy redshift surveys

Redshift-space distortions (RSD)

(Inferred from redshift measurements)

Doppler effect induced by peculiar velocity of galaxy

(Clustering anisotropies)
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Kaiser formula

Growth of structure induced by gravity

Scale factor

how the nature of gravity affects the growth of structure:

This formula holds irrespective of gravity theory

This parameter tells us

probe of gravity (general relativity) on cosmological scales

�(S)(k) = (1 + f µ2
k) �(k)

(Kaiser ’87)

Observed 
density field

‘Real’ density 
field

f ⌘ d lnD+
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ẑ
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(Fourier space)



Cosmological test of gravity
Planck Collaboration: Cosmological parameters
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Fig. 14. Constraints on the growth rate of fluctuations from
various redshift surveys in the base-⇤CDM model: dark
cyan, 6dFGS and velocities fron SNe Ia (Huterer et al. 2017);
green, 6dFGRS (Beutler et al. 2012); purple square, SDSS
MGS (Howlett et al. 2015); cyan cross, SDSS LRG (Oka et al.
2014); dark red, GAMA (Blake et al. 2013); red, BOSS
DR12 (Alam et al. 2017); blue, WiggleZ (Blake et al. 2012);
olive, VIPERS (Pezzotta et al. 2017); dark blue, FastSound
(Okumura et al. 2016); and orange, BOSS DR14 quasars
(Zarrouk et al. 2018). Where measurements are reported in cor-
relation with other variables, we here show the marginalized pos-
terior means and errors. Grey bands show the 68 % and 95 %
confidence ranges allowed by Planck TT,TE,EE+lowE+lensing.

d ln D/d ln a. For ⇤CDM, d ln D/d ln a ⇡ ⌦0.55
m (z). We follow

PCP15, defining

f �8 ⌘

h
�(vd)

8 (z)
i2

�(dd)
8 (z)

, (29)

where �(vd)
8 is the density-velocity correlation in spheres of ra-

dius 8 h
�1Mpc in linear theory.

Measuring f �8 requires modelling nonlinearities and scale-
dependent bias and is considerably more complicated than es-
timating the BAO scale from galaxy surveys. One key problem
is deciding on the precise range of scales that can be used in
an RSD analysis, since there is a need to balance potential sys-
tematic errors associated with modelling nonlinearities against
reducing statistical errors by extending to smaller scales. In addi-
tion, there is a partial degeneracy between distortions caused by
peculiar motions and the Alcock-Paczynski e↵ect. Nevertheless,
there have been substantial improvements in modelling RSDs in
the last few years, including extensive tests of systematic errors
using numerical simulations. Di↵erent techniques for measur-
ing f �8 are now consistent to within a few percent (Alam et al.
2017).

Figure 14, showing f �8 as a function of redshift, is an up-
date of figure 16 from PCP15. The most significant changes from
PCP15 are the new high precision measurements from BOSS
DR12, shown as the red points. These points are the “consen-
sus” BOSS D12 results from Alam et al. (2017), which aver-
ages the results from four di↵erent ways of analysing the DR12
data (Beutler et al. 2017; Grieb et al. 2017; Sánchez et al. 2017;
Satpathy et al. 2017). These results are in excellent agreement

with the Planck base ⇤CDM cosmology (see also Fig. 15) and
provide the tightest constraints to date on the growth rate of fluc-
tuations. We have updated the VIPERS constraints to those of
the second public data release (Pezzotta et al. 2017) and added
a data point from the Galaxy and Mass Assembly (GAMA) red-
shift survey (Blake et al. 2012). Two new surveys have extended
the reach of RSD measurements (albeit with large errors) to
redshifts greater than unity: the deep FASTSOUND emission
line redshift survey (Okumura et al. 2016); and the BOSS DR14
quasar survey (Zarrouk et al. 2018). We have also added a new
low redshift estimate of f �8 from Huterer et al. (2017) at an ef-
fective redshift of ze↵ = 0.023, which is based on correlating
deviations from the mean magnitude-redshift relation of SNe in
the Pantheon sample with estimates of the nearby peculiar veloc-
ity field determined from the 6dF Galaxy Survey (Springob et al.
2014). As can be seen from Fig. 14, these growth rate measure-
ments are consistent with the Planck base-⇤CDM cosmology
over the entire redshift range 0.023 < ze↵ < 1.52.

Since the BOSS-DR12 estimates provide the strongest con-
straints on RSDs, it is worth comparing these results with Planck

in greater detail. Here we use the “full-shape consensus” re-
sults17 on DV , f �8, and FAP for each of the three redshift bins
from Alam et al. (2017) and the associated 9⇥ 9 covariance ma-
trix, where FAP is the Alcock-Paczinski parameter

FAP(z) = DM(z)
H(z)

c
. (30)

Figure 15 shows the constraints from BOSS-DR12 on f �8 and
FAP marginalized over DV . Planck base-⇤CDM constraints are
shown by the red and green contours. For each redshift bin,
the Planck best-fit values of f �8 and FAP lie within the 68 %
contours from BOSS-DR12. Figure 15 highlights the impres-
sive consistency of the base-⇤CDM cosmology from the high
redshifts probed by the CMB to the low redshifts sampled by
BOSS.

5.4. The Hubble constant

Perhaps the most controversial tension between the Planck

⇤CDM model and astrophysical data is the discrepancy with
direct measurements of the Hubble constant H0. PCP13 re-
ported a value of H0 = (67.3 ± 1.2) km s�1Mpc�1 for the
base-⇤CDM cosmology, substantially lower that the distance-
ladder estimate of H0 = (73.8 ± 2.4) km s�1Mpc�1 from
the SH0ES18 project (Riess et al. 2011) and other H0 stud-
ies (e.g., Freedman et al. 2001, 2012). Since then, additional
data acquired as part of the SH0ES project (Riess et al. 2016;
Riess et al. 2018a, hereafter R18) has exacerbated the tension.
R18 conclude that H0 = (73.48± 1.66) km s�1Mpc�1, compared
to our Planck TT,TE,EE+lowE+lensing estimate from Table 1
of H0 = (67.27 ± 0.60) km s�1Mpc�1. Using Gaia parallaxes
Riess et al. (2018b) recently slightly tightened their measure-
ment19 to H0 = (73.52 ± 1.62) km s�1Mpc�1. Interestingly, the
central values of the SH0ES and Planck estimates have hardly

17When using RSDs to constraint dark energy in Sect. 7.4, we use the
alternative DM, H, and f �8 parameterization from Alam et al. (2017)
for consistency with the DR12 BAO-only likelihood that we use else-
where.

18SN, H0, for the Equation of State of dark energy.
19By default in this paper (and in the PLA) we use the Riess et al.

(2018a) number (available at the time we ran our parameter chains)
unless otherwise stated; using the updated number would make no sig-
nificant di↵erence to our conclusions.
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Planck 2018 results IV.

Dramatic improvement is expected in future RSD measurements,

ΛCDM (GR)
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ΛCDM (GR)

which will also open up a possibility to detect something new !
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Redshift-space distortions
Generalized

Redshift we actually measure involves not only Doppler 
effect but also several relativistic contributions

Detection of these relativistic contributions would be an important 
target in future RSD measurements
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Yoo et al. (’09), Yoo (’10), Challinor & Lewis (’11), Bonvin & Durrer (’11)
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Signature of relativistic effects
Relativistic contributions generate dipole asymmetry 
when cross-correlating two galaxy/halo populations 

e.g., McDonald (’09), Bonvin et al. (’14)

Halo catalog with observational relativistic effects

Full-sky light-cone simulation + light-ray propagation

Breton, Rasera, AT, Lacombe & Saga (’19)

2696 M.-A. Breton et al.

Figure C5. Full dipole of the cross-correlation function on the full light cone at large scales. The linear predictions are shown in dashed lines.
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Signature of relativistic effects

Relativistic correlation-function dipole 2693

Figure C2. Doppler only term of the dipole of the cross-correlation function on the full light cone at large scales. The linear predictions are shown in dashed
lines.
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Doppler only

Doppler effect also produces dipole 
(wide-angle effects → Paolo’s talk)

Major contribution at large scales

Linear theory

Relativistic contributions generate dipole asymmetry 
when cross-correlating two galaxy/halo populations 

e.g., McDonald (’09), Bonvin et al. (’14)

Halo catalog with observational relativistic effects

Full-sky light-cone simulation + light-ray propagation

Breton, Rasera, AT, Lacombe & Saga (’19)

NDM = 4,0963
(2,625 h−1Mpc)3



Signature of relativistic effects

2692 M.-A. Breton et al.

A PP EN D IX C : M A S S D EPEN D E N CE O F THE
D IP O LE

In Section 5.1 and 5.2, we presented the computation of the dipole
normalised by the bias difference. To do so we used all the cross-
correlations available with our data sets shown in Table 2. We then
performed a sum on the dipoles, weighted by the inverse of their

variance (see Section 3.3). In this Section we show the different
cross-correlations for each perturbation effect (potential only in
Fig. C1, Doppler only in Fig. C2, transverse Doppler in Fig. C3,
residual in Fig. C4 and the full dipole in Fig. C5), and for every
combination of populations at large scales. We show the results for
the computation of the cross-correlation on the full light cone using
jackknife re-sampling.

Figure C1. Potential only term of the dipole of the cross-correlation function on the full light cone at large scales. The linear predictions at first order in H/k

are shown in dash–dotted lines while the prediction with the dominant (H/k)2 terms is shown in dashed lines.
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Potential only
(gravitational redshift)

Gravitational redshift is the largest
among relativistic contributions

however, at small scales, …

Still, subdominant at large scales

Linear theory

Relativistic contributions generate dipole asymmetry 
when cross-correlating two galaxy/halo populations 

e.g., McDonald (’09), Bonvin et al. (’14)

Halo catalog with observational relativistic effects

Full-sky light-cone simulation + light-ray propagation

Breton, Rasera, AT, Lacombe & Saga (’19)

NDM = 4,0963
(2,625 h−1Mpc)3



Signature of relativistic effects

Relativistic correlation-function dipole 2685

Figure 13. Full dipole of the cross-correlation function between data H1600
and data H100. The deviation from linear theory is governed by the potential
contribution and the ‘residual” (mostly related to the coupling between
potential and velocity terms). The dipole is a sensitive probe of the potential
well beyond the virial radius of haloes.

The ISW contribution (middle right) and lensing contribution
(bottom left) are consistent with zero at small scales. The size of
the error bars provide an upper limit for the signal of ξ 1 < 5 × 10−5

for ISW and ξ 1 < 10−4 for lensing. It is still in agreement with the
linear prediction which is of the same order of magnitude, however
the fluctuations are too important to measure the signal.

Surprisingly, the residual (bottom right) is of the same order as
the potential contribution (from ∼− 10−4 at 30 h−1 Mpc to ∼−
6 × 10−3 at 6 h−1 Mpc). This is an important result of this paper.
It means that at these scales and especially below 15 h−1 Mpc, one
cannot add up all the contributions one by one. On the contrary, there
are some important contributions involving both potential terms and
velocity terms together.

5.3.2 Total dipole

The total dipole at non-linear scales is presented in Fig. 13.
It remains slightly positive of order ξ 1 ∼ 1 × 10−3 above
15 h−1 Mpc. As shown in the previous section, this is related to
the velocity contribution which remains positive in this region. At
smaller scales, the potential contribution dominates over the veloc-
ity contribution. The total dipole is then falling down quickly to
ξ 1 ∼ −1 × 10−2 at 6 h−1 Mpc. Moreover within our simulated sur-
vey of 8.34 (h−1 Gpc)3, error bars (mostly related to the fluctuations
of the velocity field) are smaller than the signal at this scale. The
dipole of the group-galaxy cross-correlation function is therefore
a good probe of the potential far outside of the group virial radii.
Interestingly, deviations from linear theory are mostly governed by
the potential and by the residual. The interpretation of the dipole is
therefore non-trivial because of correlations between potential and
velocity terms. However the dipole carries important information
about the potential.

5.3.3 Mass dependence of the contributions

So far, we have focused on the cross-correlation between
haloes of mass ∼4.5 × 1013 h−1 M⊙ and haloes of mass
∼2.8 × 1012 h−1 M⊙. In Fig. 14, we investigate the halo mass
dependence of the main dipole contributions (velocity, potential).
The mass dependence on the residual is shown in Appendix C. We

explore various configurations by cross-correlating all the different
halo populations with the lightest halo population. At large linear
scales the variation of the dipole is mostly governed by the bias
difference between the two halo populations, however at small non-
linear scales the evolution of the dipole is less trivial. The velocity
contribution to the dipole does not evolve strongly with halo mass.
It stays bounded in the range 0 < ξ 1 < 1 × 10−3. On the other hand,
the potential contribution becomes more negative at larger mass
from ξ 1 ≃ −5 × 10−4 to ξ 1 ≃ −1 × 10−2 at 6 h−1 Mpc. It means
that for massive enough haloes the potential contribution dominates
over the velocity contribution for a wide range of scales (as seen
previously). However for haloes lighter than ∼1013 h−1 M⊙ the
velocity-contribution dominates. The residual also departs from 0
at larger radii for heavier haloes. Interestingly it is mostly following
the potential contribution.

The prediction of the potential effect from equation (41) (assum-
ing spherical symmetry) reproduces the trend at a qualitative level.
However the potential contribution is overestimated. Taking into
account the dispersion around the potential deduced from spherical
symmetry as in equation (38) should improve the agreement with
the measured dipole (Cai et al. 2017). Note that we have checked
(see Appendix B) that our conclusions still hold for a very different
halo definition (i.e. linking length b = 0.1). The main difference
is a slightly better agreement with the spherical predictions for the
potential contribution to the dipole.

6 C O N C L U S I O N S

In this work we explored the galaxy clustering asymmetry by look-
ing at the dipole of the cross-correlation function between halo
populations of different masses (from Milky Way size to galaxy-
cluster size). We took into account all the relevant effects which
contribute to the dipole, from lensing to multiple redshift pertur-
bation terms. At large scales we obtain a good agreement between
linear theory and our results. At these scales the dipole can be used
as a probe of velocity field (and as a probe of gravity through the
Euler equation). However one has to consider a large enough survey
to overcome important real-space statistical fluctuations. It is also
important to take into account the light-cone effect and to accurately
model the bias and its evolution.

At smaller scales we have seen deviation from linear theory.
Moreover the gravitational redshift effect dominates the dipole be-
low 10 h−1 Mpc. It is therefore possible to probe the potential out-
side groups and clusters using the dipole. By subtracting the linear
expectation for the Doppler contribution it is in principle possible
to probe the potential to even larger radii. This is a path to explore
in order to circumvent the disadvantages of standard probes of the
potential, usually relying on strong assumptions (such as hydro-
static equilibrium) or being only sensitive to the projected potential
(lensing). A simple spherical prediction allows to predict the global
trend of the dipole but not the exact value. Moreover as we have
seen the residual (i.e all the cross terms and non-linearities of the
mapping) is of the same order as the gravitational potential contri-
bution and should be taken into account properly. At small scales
the pairwise velocity PDF is also highly non-Gaussian, leading to
high peculiar velocities and Finger-of-God effect. Coupled to grav-
itational potential and possibly wide-angle effect we expect this to
be a non-negligible contribution to the dipole. To fully understand
and probe cosmology or modified theories of gravity at these scales
using the cross-correlation dipole we therefore need a perturbation
theory or streaming model which takes into account more redshift

MNRAS 483, 2671–2696 (2019)
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Linear theory prediction fails

Linear theory

(sign flipped)

Relativistic contributions generate dipole asymmetry 
when cross-correlating two galaxy/halo populations 
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Motivation
Can we predict/model these results from analytical calculation ?

Taking account of

• Wide-angle effects on RSD

• Relativistic effect (gravitational redshift)

Further we need to go beyond linear theory

Related works

Castorina & White (’18)

Di Dio & Seljak (’18)

Zel’dovich approx.

Standard PT 1-loop

Wide-angle Relativistic

N/A

N/A

Method

Q

Doppler > Potential (large scales)
Doppler < Potential (small scales)

+ linear bias

+ nonlinear bias



Motivation

Szalay et al. ’98, 
Papai & Szapudi ’08

Present work

In this talk

• consistently reproduce linear theory of wide-angle RSD
• a good agreement with simulation results

Wide-angle RelativisticMethod

Zel’dovich approx.
+ linear bias +α

Can we predict/model these results from analytical calculation ?

Taking account of

• Wide-angle effects on RSD

• Relativistic effect (gravitational redshift)

Further we need to go beyond linear theory

Q

Doppler > Potential (large scales)
Doppler < Potential (small scales)



Modeling dipole cross-correlation
Consider Doppler effect and gravitational redshift:

̂x ≡
⃗x

| ⃗x |
≠ ̂z

(c = 1)

s = x +
1

a H {(v ⋅ ̂x ) − ψ} ̂x ;
Potential



s = x +
1

a H {(v ⋅ ̂x ) − ψ} ̂x ;

Modeling dipole cross-correlation

̂x ≡
⃗x

| ⃗x |

Zel’dovich approx. (ZA) —1st-oder Lagrangian PT

≠ ̂z

si ≃ qi + {δij + f ̂qi ̂qj} Ψj(q) − ( ψ
a H ) ̂qi ;

Potential

x(q, t) = q + (q, t),

displacement field : ( 
t!0�! 0)

Lagrangian coordinateq :

v(q, t) = a
d (q, t)

dt

In ZA,
∇q ⋅ Ψ = − D+(t) δlin(q)

f ≡
d ln D+

d ln a

Motion of halos

Consider Doppler effect and gravitational redshift: (c = 1)



Modeling dipole cross-correlation

̂x ≡
⃗x

| ⃗x |
≠ ̂zs = x +

1
a H {(v ⋅ ̂x ) − ψ} ̂x

Potential

Perhaps, we need something beyond ZA (linear) Potential at halos

ψ ⟶ ψBG + ψhalo

Assumed to be constant

Background (linear) potential

halo halohalo

Computed with ZA ∝ (∇/∇2) ΨZA
(but depend on halo mass)

Consider Doppler effect and gravitational redshift: (c = 1)



Halo potential
Potential at halo center is systematically deeper than linear potential

Measured potential offset  shows halo mass dependence, 
which is roughly consistent with halo model prediction

ψhalo = ψlin

ψlin

ψ h
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Color : halo mass

(→ Potential offset )
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Halo model

Measured by 
M-A. Breton & Y. Rasera



Modeling dipole cross-correlation

̂x ≡
⃗x

| ⃗x |
≠ ̂zs = x +

1
a H {(v ⋅ ̂x ) − ψ} ̂x

Potential

Perhaps, we need something beyond ZA (linear) Potential at halos

ψ ⟶ ψBG + ψhalo

Assumed to be constant

Background (linear) potential

halo halohalo

Computed with ZA ( ∝ ∇−2δlin)
(but depend on halo mass)

Consider Doppler effect and gravitational redshift: (c = 1)

Ψ(S)
halo(q) = − (ψhalo/aH) ̂q

Ψ(S)
ZA,i(q) = (δij + f ̂qi ̂qj) ΨZA,j(q) − (ψlin /aH) ̂qi

s = q + Ψ(S)
ZA(q) + Ψ(S)

halo(q)

(Doppler + potential)

(halo potential)
Non-perturbative

Perturbative (ZA)



Linear galaxy/halo bias

2 T. Fujita, S. Saga & A. Taruya

(assuming Lagrangian linear bias)

n(S)
X (s) d3s = nX(x)d

3x = nX

{
1 + bLX δ0(q)

}
d3q. (8)

Observed number density fluctuation δ(S)X is defined as fol-
lows:

1 + δ(S)X (s) ≡ n(S)
X (s)

⟨n(S)
X (s)⟩

(9)

From Eq. (8), the number density field nX is expressed as

n(S)
X (s) = nX

∣∣∣
∂s
∂q

∣∣∣
−1

{1 + bLX δ0(q)}

= nX

∫
d3q δD

[
s− q − dXu(q̂)−Ψ(S)

X (q)
]

× {1 + bLX δ0(q)}

= nX

∫
d3k
(2π)3

∫
d3q eik·{s−q−dXu(q̂)−Ψ(S)

X (q)}

× {1 + bLX δ0(q)}. (10)

where Ψ(S)
X is the displacement field for object X in redshift

space, subtracting the constant offset term [see Eq. (6)]:

Ψ(S)
X,i(q) ≡ Rij(q̂)Ψj(q) + cX ϵ(q)ui(q̂) (11)

Here, Rij(q̂) and ui(q̂) are respectively defined by Rij(q̂) ≡
(δij + f q̂iq̂j) and ui(q̂) ≡ q̂i/(aH).

Cross correlation function for the object X at s1 and Y at
s2:

1 + ξ(S)XY(s1, s2) =
〈{

1 + δ(S)X (s1)
}{

1 + δ(S)Y (s2)
}〉

≡ DXDY(s1, s2)
RX(s1)RY(s2)

(12)

DXDY(s1, s2) =

∫
d3k1d

3k2

(2π)6

∫
d3q1d

3q2

× eik1·{s1−q1−dXu(q̂1)}+ik2·{s2−q2−dYu(q̂2)}

×
〈
e−ik1·Ψ

(S)
X (q1)−ik2·Ψ

(S)
Y (q2)

× {1 + bLXδ0(q1)
}{

1 + bLYδ0(q2)
}〉

(13)

RX(s) =

∫
d3k
(2π)3

∫
d3q eik·{s−q−dXu(q̂)}

×
〈
e−ik·Ψ(S)

X (q){1 + bLXδ0(q1)
}〉

(14)

3 DXDY-PART

3.1 Explicit expression

Let us introduce six-dimensional vector for Lagrangian and
redshift-space positions,Q and S, and we writeQ = (q1, q2)

and S = (s1, s2). Then, the correlation term DDXY is ex-
pressed as follows:

DXDY(s1, s2) =

∫
d6Q

(2π)3|detA|1/2 e−(1/2)A−1
ab (S−Q−D)a(S−Q−D)b

×
[
1 + bLXb

L
Y ξL(q)−A−1

cd Uc(S −Q−D)d

−
{
A−1

cd −A−1
ce A−1

df (S −Q−D)e(S −Q−D)f
}
Wcd

]
,

(15)

where q ≡ |q| = |q2 − q1|. The six-dimensional vector D ≡
(dX u(q̂1), dY u(q̂2)) characterizes the constant offset of the
redshift-space poisition due to the relativistic effect.

Aab =

(
A1(q1) B(q1, q2)

TB(q1, q2) A2(q2)

)
, (16)

Ua =

(
U2(q1, q2)− y1(q̂1)
U1(q1, q2)− y2(q̂2)

)
, (17)

Wab =

(
V (q1, q2) W (q1, q2)

TW (q1, q2) Ṽ (q1, q2)

)
, (18)

A1,ij(q1) = Rik(q̂1)Rjk(q̂1)σ
2
d + ui(q̂1)uj(q̂1) c

2
X E, (19)

A2,ij(q2) = Rik(q̂2)Rjk(q̂2)σ
2
d + ui(q̂2)uj(q̂2) c

2
Y E, (20)

Bij(q1, q2) = Rik(q̂1)Rjl(q̂2)
{
C(q) δkl +D(q) q̂k q̂l

}

+ ui(q̂1)uj(q̂2) cX cY F (q)

+
{
Rik(q̂1)uj(q̂2) cY −Rjk(q̂2)ui(q̂1) cX

}
q̂k G(q)

(21)

V ij(q1, q2) = −1
2

{
U2,i(q1, q2) y1,j(q̂1) + U2,j(q1, q2) y1,i(q̂1)

}

(22)

Ṽ ij(q1, q2) = −1
2

{
U1,i(q1, q2) y2,j(q̂2) + U1,j(q1, q2) y2,i(q̂2)

}

(23)

W ij(q1, q2) =
1
2

{
U2,i(q1, q2)U1,j(q1, q2) + y1,i(q̂1)y2,j(q̂2)

}

(24)

U1,i(q1, q2) = bLX
[
Rik(q̂2)q̂k L(q)− ui(q̂2) cY M(q)

]
, (25)

U2,i(q1, q2) = bLY
[
−Rik(q̂1)q̂k L(q)− ui(q̂1) cX M(q)

]
(26)

y1,i(q̂1) = ui(q̂1) b
L
X cX T, (27)

y2,i(q̂2) = ui(q̂2) b
L
Y cY T, (28)
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Provided the relation btw. redshift- & Lagrangian-space positions,

Number density 
field of object ‘X’

n (S)
X (s) = nX

∂s
∂q

−1
{1 + bL

X δlin(q)}

= nX ∫ d3q δD[s − q − Ψ(S)
ZA(q) − Ψ(S)

X (q) ] {1 + bL
X δlin(q)}

= nX ∫ d3q ∫
d3k

(2π)3
ei k⋅[s−q−Ψ(S)

ZA(q)−Ψ(S)
X (q) ] {1 + bL

X δlin(q)}

Density field of 
object ‘X’

1 + δ(S)
X (s) ≡

n(S)
X (s)

⟨n(S)
X (s)⟩

Computing dipole cross-correlation



Correlation between objects ‘X’ and ‘Y’ :

⟨n (S)
X (s1)n (S)

Y (s2)⟩ = ∫
d3k1d3k2

(2π)6 ∫ d3q1 ∫ d3q2

× ei k1⋅{s1−q1−Ψ(S)
X (q1) }+i k2⋅{s2−q2−Ψ(S)

Y (q2) }

× ⟨e−i k1⋅Ψ(S)
ZA(q1)−i k2⋅Ψ(S)

ZA(q2) {1 + bL
X δlin(q1)}{1 + bL

X δlin(q2)}⟩
⟨n (S)

X (s)⟩ = ∫
d3k

(2π)3 ∫ d3q ei k⋅{s−q−Ψ(S)
X (q)}⟨e−i k⋅Ψ(S)

ZA(q){1 + bL
X δlin(q)}⟩

Distant-observer limit ⟨n (S)
X (s1)n (S)

Y (s2)⟩ → 3D Gaussian integral
⟨n (S)

X (s)⟩ ⟶ nX (mean number density)(e.g., Carlson et al. ’13, White’14)

2 T. Fujita, S. Saga & A. Taruya

(assuming Lagrangian linear bias)

n(S)
X (s) d3s = nX(x)d

3x = nX

{
1 + bLX δ0(q)

}
d3q. (8)

Observed number density fluctuation δ(S)X is defined as fol-
lows:

1 + δ(S)X (s) ≡ n(S)
X (s)

⟨n(S)
X (s)⟩

(9)

From Eq. (8), the number density field nX is expressed as

n(S)
X (s) = nX

∣∣∣
∂s
∂q

∣∣∣
−1

{1 + bLX δ0(q)}

= nX

∫
d3q δD

[
s− q − dXu(q̂)−Ψ(S)

X (q)
]

× {1 + bLX δ0(q)}

= nX

∫
d3k
(2π)3

∫
d3q eik·{s−q−dXu(q̂)−Ψ(S)

X (q)}

× {1 + bLX δ0(q)}. (10)

where Ψ(S)
X is the displacement field for object X in redshift

space, subtracting the constant offset term [see Eq. (6)]:

Ψ(S)
X,i(q) ≡ Rij(q̂)Ψj(q) + cX ϵ(q)ui(q̂) (11)

Here, Rij(q̂) and ui(q̂) are respectively defined by Rij(q̂) ≡
(δij + f q̂iq̂j) and ui(q̂) ≡ q̂i/(aH).

Cross correlation function for the object X at s1 and Y at
s2:

1 + ξ(S)XY(s1, s2) =
〈{

1 + δ(S)X (s1)
}{

1 + δ(S)Y (s2)
}〉

≡ DXDY(s1, s2)
RX(s1)RY(s2)

(12)

DXDY(s1, s2) =

∫
d3k1d

3k2

(2π)6

∫
d3q1d

3q2

× eik1·{s1−q1−dXu(q̂1)}+ik2·{s2−q2−dYu(q̂2)}

×
〈
e−ik1·Ψ

(S)
X (q1)−ik2·Ψ

(S)
Y (q2)

× {1 + bLXδ0(q1)
}{

1 + bLYδ0(q2)
}〉

(13)

RX(s) =

∫
d3k
(2π)3

∫
d3q eik·{s−q−dXu(q̂)}

×
〈
e−ik·Ψ(S)

X (q){1 + bLXδ0(q1)
}〉

(14)

3 DXDY-PART

3.1 Explicit expression

Let us introduce six-dimensional vector for Lagrangian and
redshift-space positions,Q and S, and we writeQ = (q1, q2)

and S = (s1, s2). Then, the correlation term DDXY is ex-
pressed as follows:

DXDY(s1, s2) =

∫
d6Q

(2π)3|detA|1/2 e−(1/2)A−1
ab (S−Q−D)a(S−Q−D)b

×
[
1 + bLXb

L
Y ξL(q)−A−1

cd Uc(S −Q−D)d

−
{
A−1

cd −A−1
ce A−1

df (S −Q−D)e(S −Q−D)f
}
Wcd

]
,

(15)

where q ≡ |q| = |q2 − q1|. The six-dimensional vector D ≡
(dX u(q̂1), dY u(q̂2)) characterizes the constant offset of the
redshift-space poisition due to the relativistic effect.

Aab =

(
A1(q1) B(q1, q2)

TB(q1, q2) A2(q2)

)
, (16)

Ua =

(
U2(q1, q2)− y1(q̂1)
U1(q1, q2)− y2(q̂2)

)
, (17)

Wab =

(
V (q1, q2) W (q1, q2)

TW (q1, q2) Ṽ (q1, q2)

)
, (18)

A1,ij(q1) = Rik(q̂1)Rjk(q̂1)σ
2
d + ui(q̂1)uj(q̂1) c

2
X E, (19)

A2,ij(q2) = Rik(q̂2)Rjk(q̂2)σ
2
d + ui(q̂2)uj(q̂2) c

2
Y E, (20)

Bij(q1, q2) = Rik(q̂1)Rjl(q̂2)
{
C(q) δkl +D(q) q̂k q̂l

}

+ ui(q̂1)uj(q̂2) cX cY F (q)

+
{
Rik(q̂1)uj(q̂2) cY −Rjk(q̂2)ui(q̂1) cX

}
q̂k G(q)

(21)

V ij(q1, q2) = −1
2

{
U2,i(q1, q2) y1,j(q̂1) + U2,j(q1, q2) y1,i(q̂1)

}

(22)

Ṽ ij(q1, q2) = −1
2

{
U1,i(q1, q2) y2,j(q̂2) + U1,j(q1, q2) y2,i(q̂2)

}

(23)

W ij(q1, q2) =
1
2

{
U2,i(q1, q2)U1,j(q1, q2) + y1,i(q̂1)y2,j(q̂2)

}

(24)

U1,i(q1, q2) = bLX
[
Rik(q̂2)q̂k L(q)− ui(q̂2) cY M(q)

]
, (25)

U2,i(q1, q2) = bLY
[
−Rik(q̂1)q̂k L(q)− ui(q̂1) cX M(q)

]
(26)

y1,i(q̂1) = ui(q̂1) b
L
X cX T, (27)

y2,i(q̂2) = ui(q̂2) b
L
Y cY T, (28)
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=
⟨n(S)

X (s1)n(S)
Y (s2)⟩

⟨n(S)
X (s1)⟩ ⟨n(S)

Y (s2)⟩

Computing dipole cross-correlation



Remarks In the presence of wide-angle effects,

Parameters: bX, bY (bias) ψhalo,X, ψhalo,Y (halo potential)

2 T. Fujita, S. Saga & A. Taruya

(assuming Lagrangian linear bias)

n(S)
X (s) d3s = nX(x)d

3x = nX

{
1 + bLX δ0(q)

}
d3q. (8)

Observed number density fluctuation δ(S)X is defined as fol-
lows:

1 + δ(S)X (s) ≡ n(S)
X (s)

⟨n(S)
X (s)⟩

(9)

From Eq. (8), the number density field nX is expressed as

n(S)
X (s) = nX

∣∣∣
∂s
∂q

∣∣∣
−1

{1 + bLX δ0(q)}

= nX

∫
d3q δD

[
s− q − dXu(q̂)−Ψ(S)

X (q)
]

× {1 + bLX δ0(q)}

= nX

∫
d3k
(2π)3

∫
d3q eik·{s−q−dXu(q̂)−Ψ(S)

X (q)}

× {1 + bLX δ0(q)}. (10)

where Ψ(S)
X is the displacement field for object X in redshift

space, subtracting the constant offset term [see Eq. (6)]:

Ψ(S)
X,i(q) ≡ Rij(q̂)Ψj(q) + cX ϵ(q)ui(q̂) (11)

Here, Rij(q̂) and ui(q̂) are respectively defined by Rij(q̂) ≡
(δij + f q̂iq̂j) and ui(q̂) ≡ q̂i/(aH).

Cross correlation function for the object X at s1 and Y at
s2:

1 + ξ(S)XY(s1, s2) =
〈{

1 + δ(S)X (s1)
}{

1 + δ(S)Y (s2)
}〉

≡ DXDY(s1, s2)
RX(s1)RY(s2)

(12)

DXDY(s1, s2) =

∫
d3k1d

3k2

(2π)6

∫
d3q1d

3q2

× eik1·{s1−q1−dXu(q̂1)}+ik2·{s2−q2−dYu(q̂2)}

×
〈
e−ik1·Ψ

(S)
X (q1)−ik2·Ψ

(S)
Y (q2)

× {1 + bLXδ0(q1)
}{

1 + bLYδ0(q2)
}〉

(13)

RX(s) =

∫
d3k
(2π)3

∫
d3q eik·{s−q−dXu(q̂)}

×
〈
e−ik·Ψ(S)

X (q){1 + bLXδ0(q1)
}〉

(14)

3 DXDY-PART

3.1 Explicit expression

Let us introduce six-dimensional vector for Lagrangian and
redshift-space positions,Q and S, and we writeQ = (q1, q2)

and S = (s1, s2). Then, the correlation term DDXY is ex-
pressed as follows:

DXDY(s1, s2) =

∫
d6Q

(2π)3|detA|1/2 e−(1/2)A−1
ab (S−Q−D)a(S−Q−D)b

×
[
1 + bLXb

L
Y ξL(q)−A−1

cd Uc(S −Q−D)d

−
{
A−1

cd −A−1
ce A−1

df (S −Q−D)e(S −Q−D)f
}
Wcd

]
,

(15)

where q ≡ |q| = |q2 − q1|. The six-dimensional vector D ≡
(dX u(q̂1), dY u(q̂2)) characterizes the constant offset of the
redshift-space poisition due to the relativistic effect.

Aab =

(
A1(q1) B(q1, q2)

TB(q1, q2) A2(q2)

)
, (16)

Ua =

(
U2(q1, q2)− y1(q̂1)
U1(q1, q2)− y2(q̂2)

)
, (17)

Wab =

(
V (q1, q2) W (q1, q2)

TW (q1, q2) Ṽ (q1, q2)

)
, (18)

A1,ij(q1) = Rik(q̂1)Rjk(q̂1)σ
2
d + ui(q̂1)uj(q̂1) c

2
X E, (19)

A2,ij(q2) = Rik(q̂2)Rjk(q̂2)σ
2
d + ui(q̂2)uj(q̂2) c

2
Y E, (20)

Bij(q1, q2) = Rik(q̂1)Rjl(q̂2)
{
C(q) δkl +D(q) q̂k q̂l

}

+ ui(q̂1)uj(q̂2) cX cY F (q)

+
{
Rik(q̂1)uj(q̂2) cY −Rjk(q̂2)ui(q̂1) cX

}
q̂k G(q)

(21)

V ij(q1, q2) = −1
2

{
U2,i(q1, q2) y1,j(q̂1) + U2,j(q1, q2) y1,i(q̂1)

}

(22)

Ṽ ij(q1, q2) = −1
2

{
U1,i(q1, q2) y2,j(q̂2) + U1,j(q1, q2) y2,i(q̂2)

}

(23)

W ij(q1, q2) =
1
2

{
U2,i(q1, q2)U1,j(q1, q2) + y1,i(q̂1)y2,j(q̂2)

}

(24)

U1,i(q1, q2) = bLX
[
Rik(q̂2)q̂k L(q)− ui(q̂2) cY M(q)

]
, (25)

U2,i(q1, q2) = bLY
[
−Rik(q̂1)q̂k L(q)− ui(q̂1) cX M(q)

]
(26)

y1,i(q̂1) = ui(q̂1) b
L
X cX T, (27)

y2,i(q̂2) = ui(q̂2) b
L
Y cY T, (28)
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=
⟨n(S)

X (s1)n(S)
Y (s2)⟩

⟨n(S)
X (s1)⟩ ⟨n(S)

Y (s2)⟩

Correlation between objects ‘X’ and ‘Y’ :

Computing dipole cross-correlation

⟨n (S)
X (s)⟩ nXcannot be reduced to

Non-trivial scale-dependence from denominator

(real-space mean density)

is function ofξ(S)
XY |s1 | , |s2 |s ≡ |s2 − s1 | and

One cannot take advantage of symmetry to reduce 
multi-dim integration → need to evaluate 6D integral

(c.f. Castorina & White ’18)



Results: dipole cross correlation

⟨z⟩ = 0.33

b2 = 1.08
b1 = 2.07

Large scale

Small scale

Magenta: measured halo potential used
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Results: dipole cross correlation

b2 = 1.08
b1 = 1.69

⟨z⟩ = 0.33

Large scale

Small scale

Magenta: measured halo potential used



Summary
Modeling redshift-space cross-correlation function with 
wide-angle and relativistic effects at quasi-linear scales

Formulation based on Zel’dovich approximation:

(c.f. Castorina & White ’18)

• Linear bias & halo potential

Useful to study impact of wide-angle RSD and feasibility to detect

Consistent with linear theory of wide-angle RSD

Good agreement with simulations including relativistic effects

• Doppler + potential (gravitational redshift)

(c.f. Di Dio & Seljak ’18)

(4 parameters)

relativistic effects at large scales (e.g., Beutler et al. ‘18; Alam et al. ‘17)


