8th April 2019

YITP

Wide-angle redshift-space distortions at quasi-linear scales

~ modeling relativistic dipole ~

Atsushi Taruya
(Yukawa Institute for Theoretical Physics)

Plan of talk

What we did/are doing

- Modeling wide-angle redshift-space distortions at quasi-linear scales
- Predicting halo cross-correlation functions with relativistic effect \longrightarrow comparison with N -body simulation
- Introduction \& motivation
- Modeling relativistic dipole
- Results
- Summary

Collaborators

Michel-Andrès Breton

(Laboratoire d'Astrophysique de Marseille)
Yann Rasera
I'Obsefvatoire - LUTH
(LUTH, Observatoire de Paris)
Tomohiro Fujita
(Dept. Physics, Kyoto Univ.)
Shohei Saga

(Yukawa Institute for Theoretical Physics)

Introduction

Observed large-scale structure generally appears distorted
In galaxy redshift surveys
Line-of-sight position

Actual position
(Inferred from redshift measurements)
(classical)
Redshift-space distortions (RSD)
(Clustering anisotropies)
Doppler effect induced by peculiar velocity of galaxy

Kaiser formula

Observed
density field $\delta^{(\mathrm{S})}(\boldsymbol{k})=\left(1+f \mu_{k}^{2}\right) \delta(\boldsymbol{k})$ (Fourier space)
'Real' density field

This parameter tells us
how the nature of gravity affects the growth of structure:

$$
f \equiv \frac{d \ln D_{+}}{d \ln a} \quad \text { Growth of structure induced by gravity }
$$

This formula holds irrespective of gravity theory probe of gravity (general relativity) on cosmological scales

Cosmological test of gravity

Dramatic improvement is expected in future RSD measurements, which will also open up a possibility to detect something new !

Generalized

Redshift-space distortions

Redshift we actually measure involves not only Doppler effect but also several relativistic contributions

Yoo et al. ('09), Yoo ('IO), Challinor \& Lewis ('II), Bonvin \& Durrer ('II)
Observed galaxy position (comoving)

Actual position

$$
\left.\vec{s}=\vec{x}+\hat{x}\left\{\frac{c}{H} \delta z\right)-\frac{1}{c^{2}} \int_{0}^{\chi\left(z_{\mathrm{obs}}\right)} d \chi^{\prime}(\psi-\phi)\right\}-\chi\left(z_{\mathrm{obs}}\right) \vec{\alpha}
$$

$\begin{gathered}\text { For rest-frame } \\ \text { observer }\end{gathered} \delta z=\left(1+z_{\mathrm{obs}}\right)\left\{\frac{\overrightarrow{\mathrm{v}}_{\mathrm{s}} \cdot \hat{x}}{c}-\frac{\psi_{\mathrm{s}}}{c^{2}}+\frac{1}{2} \frac{\mathrm{v}_{\mathrm{s}}^{2}}{c^{2}}-\frac{1}{c^{2}} \int_{t_{\mathrm{s}}}^{t_{\mathrm{o}}} d t^{\prime}(\dot{\psi}-\dot{\phi})\right\}$ standard RSD gravitational transverse (Doppler) redshift Doppler
Detection of these relativistic contributions would be an important target in future RSD measurements

Signature of relativistic effects

Relativistic contributions generate dipole asymmetry when cross-correlating two galaxy/halo populations e.g., McDonald ('09), Bonvin et al. ('14)

Full-sky light-cone simulation + light-ray propagation

$$
\begin{gathered}
\left(2,625 h^{-1} \mathrm{Mpc}\right)^{3} \\
N_{\mathrm{DM}}=4,096^{3}
\end{gathered}
$$

Halo catalog with observational relativistic effects
Breton, Rasera, AT, Lacombe \& Saga ('I9)

Dipole cross
correlation $\xi_{1}(r) \equiv \frac{3}{2} \int_{-1}^{1} d \mu \xi^{(S)}\left(s_{1}, s_{2}\right)$

Directional cosine $\mu \equiv \hat{d} \cdot \hat{r}$

Signature of relativistic effects

Relativistic contributions generate dipole asymmetry when cross-correlating two galaxy/halo populations e.g., McDonald ('09), Bonvin et al. ('14)

Full-sky light-cone simulation + light-ray propagation $\left.\quad\left(2,625 h^{-1} \mathrm{Mpc}\right)^{3}\right)$
Halo catalog with observational relativistic effects
Breton, Rasera, AT, Lacombe \& Saga ('I9)

Doppler effect also produces dipole (wide-angle effects \rightarrow Paolo's talk)
\longrightarrow Major contribution at large scales

Signature of relativistic effects

Relativistic contributions generate dipole asymmetry when cross-correlating two galaxy/halo populations e.g., McDonald ('09), Bonvin et al. ('14)

Full-sky light-cone simulation + light-ray propagation $\quad\binom{\left(2,625 h^{-1} \mathrm{Mpc}\right)^{3}}{N_{\mathrm{DM}}=4,096^{3}}$
Halo catalog with observational relativistic effects
Breton, Rasera, AT, Lacombe \& Saga ('I9)

Gravitational redshift is the largest among relativistic contributions

Still, subdominant at large scales however, at small scales, ...

Signature of relativistic effects

Relativistic contributions generate dipole asymmetry when cross-correlating two galaxy/halo populations e.g., McDonald ('09), Bonvin et al. ('14)

Full-sky light-cone simulation + light-ray propagation $\quad\left(\begin{array}{c}\left(2,625 h^{-1} \mathrm{Mpc}\right)^{3} \\ N_{\mathrm{DM}}=4,096^{3}\end{array}\right.$
Halo catalog with observational relativistic effects
Breton, Rasera, AT, Lacombe \& Saga ('I9)

Gravitational redshift starts to be dominant, and finally wins
(sign flipped)

Linear theory prediction fails

Motivation

Q Can we predict/model these results from analytical calculation ?
Taking account of
-Wide-angle effects on RSD

- Relativistic effect (gravitational redshift)

Further we need to go beyond linear theory

Related works	Method	Wide-angle	Relativistic
Castorina \& White ('18)	Zel'dovich approx + linear bias	\bigcirc	N/A
Di Dio \& Seljak ('18)	Standard PT I-loop + nonlinear bias	N/A	\bigcirc

Motivation

Q Can we predict/model these results from analytical calculation ?

Taking account of

- Wide-angle effects on RSD
- Relativistic effect (gravitational redshift)

Further we need to go beyond linear theory
In this talk
Present work

Doppler > Potential (large scales)
Doppler < Potential (small scales)

In this talk	Method	Wide-angle	Relativistic
Present work	Zel'dovich approx. + linear bias $+\alpha$	\bigcirc	\bigcirc

- consistently reproduce linear theory of wide-angle RSD
-a good agreement with simulation results
Szalay et al. '98,
Papai \& Szapudi '08

Modeling dipole cross-correlation

Consider Doppler effect and gravitational redshift: $\quad(c=1)$

$$
\mathbf{s}=\mathbf{x}+\frac{1}{a H}\{(\mathbf{v} \cdot \hat{x})-\psi\} \hat{x} ; \quad \hat{x} \equiv \frac{\vec{x}}{|\vec{x}|} \neq \hat{z}
$$

Modeling dipole cross-correlation

 Consider Doppler effect and gravitational redshift: $\quad(c=1)$$$
\mathbf{s}=\underset{\mathbf{x}}{\mathrm{x}}+\frac{1}{a H}\{(\mathrm{v} \cdot \hat{x})-\psi\}, \hat{x} ; \quad \hat{x} \equiv \frac{\vec{x}}{|\vec{x}|} \neq \hat{z}
$$

Motion of halos Zel'dovich approx. (ZA) —l st-oder Lagrangian PT

$$
x(\boldsymbol{q}, t)=\boldsymbol{q}+\boldsymbol{\Psi}(\boldsymbol{q}, t), \quad \boldsymbol{v}(\boldsymbol{q}, t)=a \frac{d \boldsymbol{\Psi}(\boldsymbol{q}, t)}{d t}
$$

In ZA,
q : Lagrangian coordinate
$\nabla_{q} \cdot \Psi=-D_{+}(t) \delta_{\text {lin }}(q) \quad \Psi:$ displacement field $(\Psi \xrightarrow{t \rightarrow 0} 0)$

$$
s_{i} \simeq q_{i}+\left\{\delta_{i j}+f \hat{q}_{i} \hat{q}_{j}\right\} \Psi_{j}(q)-\left(\frac{\psi}{a H}\right) \hat{q}_{i} ; \quad f \equiv \frac{d \ln D_{+}}{d \ln a}
$$

Modeling dipole cross-correlation

 Consider Doppler effect and gravitational redshift: $\quad(c=1)$$$
\mathbf{s}=\mathbf{x}+\frac{1}{a H}\{(\mathbf{v} \cdot \hat{x})-\psi\} \underset{\text { Potential }}{\psi} \hat{x} \quad \hat{x} \equiv \frac{\vec{x}}{|\vec{x}|} \neq \hat{z}
$$

Potential at halos Perhaps, we need something beyond ZA (linear)

Computed with ZA $\propto\left(\nabla / \nabla^{2}\right) \Psi_{\text {ZA }} \quad$ Assumed to be constant (but depend on halo mass)

Halo potential

Potential at halo center is systematically deeper than linear potential

Measured potential offset shows halo mass dependence, which is roughly consistent with halo model prediction

Modeling dipole cross-correlation

 Consider Doppler effect and gravitational redshift: $\quad(c=1)$$$
\mathbf{s}=\mathbf{x}+\frac{1}{a H}\{(\mathbf{v} \cdot \hat{x})-\psi\} \underset{\text { Potential }}{\psi} \hat{x} \quad \hat{x} \equiv \frac{\vec{x}}{|\vec{x}|} \neq \hat{z}
$$

Potential at halos Perhaps, we need something beyond ZA (linear)

$$
\begin{aligned}
s= & \boldsymbol{q}+\Psi_{\mathrm{ZA}}^{(S)}(\boldsymbol{q})+\Psi_{\text {halo }}^{(S)}(\boldsymbol{q}) \\
& \Psi_{\mathrm{ZA}, i}^{(\mathrm{S})}(\boldsymbol{q})=\left(\delta_{i j}+f \hat{q}_{i} \hat{q}_{j}\right) \Psi_{\mathrm{ZA}, j}(\boldsymbol{q})-\left(\psi_{\text {lin }} / a H\right) \hat{q}_{i} \\
& \Psi_{\text {halo }}^{(\mathrm{S})}(\boldsymbol{q})=-\left(\psi_{\text {halo }} / a H\right) \hat{q}
\end{aligned}
$$

Perturbative (ZA) (Doppler + potential)
Non-perturbative (halo potential)

Computing dipole cross-correlation

Provided the relation btw. redshift- \& Lagrangian-space positions,
Number density field of object ' X '

$$
n_{\mathrm{X}}^{(\mathrm{S})}(\boldsymbol{s}) d^{3} \boldsymbol{s}=n_{\mathrm{X}}(\boldsymbol{x}) d^{3} \boldsymbol{x}=\bar{n}_{\mathrm{X}}\left\{1+b_{\mathrm{X}}^{\mathrm{L}} \delta_{0}(\boldsymbol{q})\right\} d^{3} \boldsymbol{q} \cdot
$$

$$
\begin{aligned}
n_{\mathrm{X}}^{(\mathrm{S})}(\boldsymbol{s}) & =\bar{n}_{\mathrm{X}}\left|\frac{\partial s}{\partial \boldsymbol{q}}\right|^{-1}\left\{1+b_{\mathrm{X}}^{\mathrm{L}} \delta_{\operatorname{lin}}(\boldsymbol{q})\right\} \quad \text { Linear galaxy/halo bias } \\
& =\bar{n}_{\mathrm{X}} \int d^{3} \boldsymbol{q} \delta_{\mathrm{D}}\left[s-\boldsymbol{q}-\Psi_{\mathrm{ZA}}^{(\mathrm{S})}(\boldsymbol{q})-\Psi_{\mathrm{X}}^{(\mathrm{S})}(\boldsymbol{q})\right]\left\{1+b_{\mathrm{X}}^{\mathrm{L}} \delta_{\text {lin }}(\boldsymbol{q})\right\} \\
& =\bar{n}_{\mathrm{X}} \int d^{3} \boldsymbol{q} \int \frac{d^{3} \boldsymbol{k}}{(2 \pi)^{3}} e^{i \boldsymbol{k} \cdot\left[s-\boldsymbol{q}-\Psi_{\mathrm{ZA}}^{\left(\mathrm{S}(\boldsymbol{q})-\Psi_{\mathrm{X}}^{(S)}(\boldsymbol{q})\right]}\left\{1+b_{\mathrm{X}}^{\mathrm{L}} \delta_{\operatorname{lin}}(\boldsymbol{q})\right\}\right.} \\
& \begin{array}{c}
\text { Density field of } \\
\text { object } \mathrm{X}^{\prime}
\end{array} 1+\delta_{\mathrm{X}}^{(\mathrm{S})}(\boldsymbol{s}) \equiv \frac{n_{\mathrm{X}}^{(\mathrm{S})}(\boldsymbol{s})}{\left\langle n_{\mathrm{X}}^{(\mathrm{S})}(\boldsymbol{s})\right\rangle}
\end{aligned}
$$

Computing dipole cross-correlation

Correlation between objects ' X ' and ' Y '

$$
1+\xi_{\mathrm{XY}}^{(\mathrm{S})}\left(\boldsymbol{s}_{1}, \boldsymbol{s}_{2}\right)=\left\langle\left\{1+\delta_{\mathrm{X}}^{(\mathrm{S})}\left(\boldsymbol{s}_{1}\right)\right\}\left\{1+\delta_{\mathrm{Y}}^{(\mathrm{S})}\left(\boldsymbol{s}_{2}\right)\right\}\right\rangle=\frac{\left\langle n_{\mathrm{X}}^{(\mathrm{S})}\left(\boldsymbol{s}_{1}\right) n_{\mathrm{Y}}^{(\mathrm{S})}\left(\boldsymbol{s}_{2}\right)\right\rangle}{\left\langle n_{\mathrm{X}}^{(\mathrm{S})}\left(\boldsymbol{s}_{1}\right)\right\rangle\left\langle n_{\mathrm{Y}}^{(\mathrm{S})}\left(\boldsymbol{s}_{2}\right)\right\rangle}
$$

$$
\left\langle n_{\mathrm{X}}^{(\mathrm{S})}\left(\boldsymbol{s}_{1}\right) n_{\mathrm{Y}}^{(\mathrm{S})}\left(\boldsymbol{s}_{2}\right)\right\rangle=\int \frac{d^{3} \boldsymbol{k}_{1} d^{3} \boldsymbol{k}_{2}}{(2 \pi)^{6}} \int d^{3} \boldsymbol{q}_{1} \int d^{3} \boldsymbol{q}_{2}
$$

$$
\times e^{i k_{1} \cdot\left\{s_{1}-\boldsymbol{q}_{1}-\Psi_{\mathrm{X}}^{(\mathrm{S})}\left(\boldsymbol{q}_{1}\right)\right\}+i k_{2} \cdot\left\{s_{2}-\boldsymbol{q}_{2}-\Psi_{\mathrm{Y}}^{(\mathrm{S})}\left(\boldsymbol{q}_{2}\right)\right\}}
$$

$$
\times\left\langle e^{-i k_{1} \cdot \Psi_{\mathrm{ZA}}^{(\mathrm{S})}\left(\boldsymbol{q}_{1}\right)-i k_{2} \cdot \Psi_{\mathrm{ZA}}^{\mathrm{S}}\left(\boldsymbol{q}_{2}\right)}\left\{1+b_{\mathrm{X}}^{\mathrm{L}} \delta_{\mathrm{lin}}\left(\boldsymbol{q}_{1}\right)\right\}\left\{1+b_{\mathrm{X}}^{\mathrm{L}} \delta_{\mathrm{lin}}\left(\boldsymbol{q}_{2}\right)\right\}\right\rangle
$$

$\left\langle n_{\mathrm{X}}^{(\mathrm{S})}(\boldsymbol{s})\right\rangle=\int \frac{d^{3} \boldsymbol{k}}{(2 \pi)^{3}} \int d^{3} \boldsymbol{q} e^{i \boldsymbol{k} \cdot\left\{\boldsymbol{s}-\boldsymbol{q}-\boldsymbol{\Psi}_{\mathrm{X}}^{(\mathrm{S})}(\boldsymbol{q})\right\}}\left\langle e^{-i \boldsymbol{k} \cdot \Psi_{\mathrm{ZA}}^{(\mathrm{S})}(\boldsymbol{q})}\left\{1+b_{\mathrm{X}}^{\mathrm{L}} \delta_{\operatorname{lin}}(\boldsymbol{q})\right\}\right\rangle$
Distant-observer limit $\left\langle n_{\mathrm{X}}^{(\mathrm{S})}\left(s_{1}\right) n_{\mathrm{Y}}^{(\mathrm{S})}\left(s_{2}\right)\right\rangle \rightarrow$ 3D Gaussian integral \mid (e.g., Carlson et al.' $\mid 3$, White' $\mid 4) \quad\left\langle n_{\mathrm{X}}^{(\mathrm{S})}(s)\right\rangle \longrightarrow \quad \bar{n}_{\mathrm{X}}$ (mean number density)

Computing dipole cross-correlation

Correlation between objects ' X ' and ' Y '

$$
1+\xi_{\mathrm{XY}}^{(\mathrm{S})}\left(\boldsymbol{s}_{1}, \boldsymbol{s}_{2}\right)=\left\langle\left\{1+\delta_{\mathrm{X}}^{(\mathrm{S})}\left(\boldsymbol{s}_{1}\right)\right\}\left\{1+\delta_{\mathrm{Y}}^{(\mathrm{S})}\left(\boldsymbol{s}_{2}\right)\right\}\right\rangle=\frac{\left\langle n_{\mathrm{X}}^{(\mathrm{S})}\left(\boldsymbol{s}_{1}\right) n_{\mathrm{Y}}^{(\mathrm{S})}\left(\boldsymbol{s}_{2}\right)\right\rangle}{\left\langle n_{\mathrm{X}}^{(\mathrm{S})}\left(\boldsymbol{s}_{1}\right)\right\rangle\left\langle n_{\mathrm{Y}}^{(\mathrm{S})}\left(\boldsymbol{s}_{2}\right)\right\rangle}
$$

Remarks In the presence of wide-angle effects,
$\left\langle n_{\mathrm{X}}^{(S)}(s)\right\rangle$ cannot be reduced to \bar{n}_{X} (real-space mean density)
....... Non-trivial scale-dependence from denominator
$\xi_{\mathrm{XY}}^{(\mathrm{S})}$ is function of $s \equiv\left|s_{2}-s_{1}\right|$ and $\left|s_{1}\right|,\left|s_{2}\right|$
........ One cannot take advantage of symmetry to reduce multi-dim integration \rightarrow need to evaluate 6D integral
(c.f. Castorina \& White ' 18)

Parameters: $b_{\mathrm{X}}, b_{\mathrm{Y}}$ (bias) $\psi_{\text {halo }, \mathrm{X},}, \psi_{\text {halo }, \mathrm{Y}}$ (halo potential)

Results: dipole cross correlation

Large scale

Magenta: measured halo potential used

Small scale

Results: dipole cross correlation

Large scale

Magenta: measured halo potential used

Small scale

Results: dipole cross correlation

Large scale

Magenta: measured halo potential used

Small scale

Summary

Modeling redshift-space cross-correlation function with wide-angle and relativistic effects at quasi-linear scales

Formulation based on Zel'dovich approximation:

- Doppler + potential (gravitational redshift)
- Linear bias \& halo potential (4 parameters)

Consistent with linear theory of wide-angle RSD
(c.f. Castorina \& White ' 18)

Good agreement with simulations including relativistic effects
(c.f. Di Dio \& Seljak 'I8)

Useful to study impact of wide-angle RSD and feasibility to detect relativistic effects at large scales (e.g., Beutler et al.'I8;Alam et al.‘I7)

