Semiclassical path(s) to large-scale structure

arXiv: 1812.05633

to appear in PRD

Cora Uhlemann

DAMTP & Fitzwilliam College

with Oliver Hahn, Cornelius Rampf & Mateja Gosenca

COSMIC LABORATORY

beginning nearly uniform

today rich structure

AFTERGLOW early universe

LARGE-SCALE STRUCTURE Dark Matter

COSMIC WEB galaxies

MATTER CLUSTERING

National Center for Supercomputer Applications (A. Kravtsov & A. Klypin)

CHALLENGES

NUMERICAL N PARTICLES

large-scales

limited power

limited sampling

ANALYTICAL 2 FIELDS

small-scales

limited accuracy

limited features

CLASSICAL DYNAMICS

APPROXIMATE: SHOOT PARTICLES

follow initial gravitational potential

$$\boldsymbol{v}(\boldsymbol{q},a) = -\boldsymbol{\nabla}\varphi_g^{\mathrm{ini}}(\boldsymbol{q})$$

CLASSICAL DYNAMICS

APPROXIMATE: SHOOT PARTICLES

follow initial gravitational potential

$$\boldsymbol{v}(\boldsymbol{q},a) = -\boldsymbol{\nabla}\varphi_g^{\mathrm{ini}}(\boldsymbol{q})$$

$$\boldsymbol{x}(\boldsymbol{q},a) = \boldsymbol{q} - a \boldsymbol{\nabla} \varphi_g^{\mathrm{ini}}(\boldsymbol{q})$$

APPROXIMATE: SHOOT PARTICLES

follow initial gravitational potential

CLASSICAL DYNAMICS

PROBLEM: OVERSHOOTING

shell-crossing: singular Euledensity

no comeback after fly-through

large scale impact: Zvonimir Vlah LPT @ shell-crossing: Shohei Saga

CLASSICAL DYNAMICS

FREE PROPAGATION

classical action: displacement × velocity

$$S_0(\boldsymbol{x}, \boldsymbol{q}, a) = \frac{1}{2}(\boldsymbol{x} - \boldsymbol{q}) \cdot \frac{\boldsymbol{x} - \boldsymbol{q}}{a}$$

background expansion

TRANSLATE FREE PROPAGATION

transition amplitude

$$\psi_0(\boldsymbol{x}, a) = N \int d^3 q \exp\left[\frac{i}{\hbar}S_0(\boldsymbol{x}, \boldsymbol{q}, a)\right] \psi_0^{\text{ini}}(\boldsymbol{q})$$

Schrödinger equation

$$i\hbar\partial_a\psi_0 = -\frac{\hbar^2}{2}\nabla^2\psi_0$$

SEMICLASSICAL DYNAMICS

PARTICLEFREE WAVETRAJECTORIESFUNCTION

credit: Oliver Hahn

position x

SEMICLASSICAL DYNAMICS

PROPAGATION WITH INTERACTION

$$i\hbar\partial_a\psi = -rac{\hbar^2}{2}
abla^2\psi + V_{\mathrm{eff}}(\boldsymbol{x},a)\psi$$
 \uparrow
 $V_{\mathrm{eff}} = rac{3}{2a}\left(\varphi_g - \phi_v
ight)$ fluid

$$V_{\rm eff}^{(2)} = \frac{3}{7} \nabla^{-2} \left[\left(\nabla^2 \varphi_{\rm g}^{(\rm ini)} \right)^2 - \left(\nabla_i \nabla_j \varphi_{\rm g}^{(\rm ini)} \right)^2 \right]$$

2SPT: tidal

SEMICLASSICAL DYNAMICS

PROPAGATOR PT: 2PPT

 $\mathbf{\Omega}$

$$i\hbar\partial_a\psi = -\frac{\hbar^2}{2}\nabla^2\psi + V_{\text{eff}}^{(2)}\psi$$

solve: free propagator x $\exp\left(\frac{i}{\hbar}S_{\text{tid}}
ight)$

$$S_{\text{tid}} \simeq -\frac{a}{2} \left[V_{\text{eff}}^{(2)}(\boldsymbol{q}) + V_{\text{eff}}^{(2)}(\boldsymbol{x}) \right]$$

PROPAGATOR GONE LAGRANGIAN

phase-space
$$\bar{f}_W[\psi, \hbar \to 0]$$

→ displacement: 2LPT

PROPAGATOR GONE LAGRANGIAN

phase-space
$$\bar{f}_W[\psi, \hbar \to 0]$$

 \rightarrow velocity: beyond 2LPT

$$\boldsymbol{v}(\boldsymbol{q}) = -\boldsymbol{\nabla}\varphi_g^{(\mathrm{ini})} - a\boldsymbol{\nabla}V_{\mathrm{eff}}^{(2)}$$

$$+\frac{a^2}{2}\boldsymbol{\nabla}\nabla V_{\text{eff}}^{(2)}\cdot\nabla\varphi_g^{(\text{ini})}$$

vorticity conserver

VORTICITY CONSERVATION

Eulerian $\nabla_x \times v = 0$

pre-shell-crossing

VORTICITY CONSERVATION

Lagrangian: Cauchy invariants $\varepsilon_{ijk} x_{l,j} \dot{x}_{l,k} = 0$

 $\begin{array}{l} \mathbf{2LPT} \\ = \mathcal{O}(a^2) \end{array}$

 $\begin{array}{l} \mathbf{2PPT} \\ = \mathcal{O}(a^3) \end{array}$

vorticity generation

vorticity generation

vorticity from topological defects

CONCLUSION

Large-scale structure = cosmic laboratory

Challenge: nonlinear dynamics goal: Zeldovich + tidal + long-term limit **Tool: semiclassical physics** classical action \rightarrow free propagator → free Schrödinger equation add potential: tidal effects (+long-term?) new PT avoids spurious vorticity