

It is possible to show that when you consider the high k limit, or in other words the
contribution to these integrals of modes $\mathrm{q} \ll \mathrm{k}$ (IR-modes) the diagrams simplify to
n loops $\sim \frac{1}{n!}\left(-\frac{k^{2} \sigma_{v}^{2}}{2}\right)^{n} \xrightarrow[\text { high-k }]{ } \quad \Gamma_{\delta}^{(1)}(k, z) \approx D(z) \exp \left(-k^{2} \sigma_{v}^{2} / 2\right)$

$$
\sigma_{v}^{2}=(4 \pi / 3) \int P(q) / q^{2} d^{3} q \quad \begin{array}{l}\text { This is the variance of the displacement field, its } \\ \text { dominated by large scale flow }(\sim 6 \mathrm{Mpc} / \mathrm{h})\end{array}
$$

$\begin{aligned} & \text { On very large scales we can use PT to } \\ & \text { compute corrections }\left(\sim \mathrm{P}_{13}\right) \xrightarrow[\text { low-k }]{ } \Gamma_{\delta}^{(1)}(k, z) \approx D(z)-f(k) D^{3}(z)+\ldots\end{aligned}$

- Using the (unequal time) cross-correlations with the initial conditions as basis is not
optimal because the bulk flow displacements are large
- These induce strong "gaussian" damping towards high-k, we need many "loops" to
restore power
Ideally we want to do RPT in a frame that is moving with the large-scale bulk flow to
capture the motion of particles relative to it. Equal time correlations do not depend
on uniform displacements (IR safe).

$\left.\cdot(\perp)^{y} d(, y+\boldsymbol{y})_{(\varepsilon)}\right)^{\rho}=\left\langle\left(\iota^{\prime}, \boldsymbol{y}\right) \boldsymbol{\rho}\left(\perp^{\prime} \boldsymbol{y}\right) \rho\right\rangle$
- Equal time correlators are
invariant under GT :

- And the velocity variance as :

- We will link this variance to the dynamics of the system in such a way
that in practice our final PT expressions will be GI
- Any observable should be independent of this transformation if
computed fully non-perturbative. A finite calculation might show
some dependence with the GRF.
- Hence we choose the Random Galilean Transformation in a way that,
at the perturbative order we are working, the dependence of the
observable, e.g. P(k), with the RGT is minimised
- Our intention is that this prescription will bring us closer to the true
answer (something that can be show explicitly with ZA).

$\sigma_{v}^{2}=I(k, 0) / k^{2}$
unицэәds ргәу ‘əл

ләрıо Кq ләрло ұиечмели! We can now pull out the propagator in the new variables, but the above expression will be

[^0]
UO!łeuu!xOIdde पD! $\Lambda 0 P[\partial Z$

$\overline{0=x \varrho /(y) d \varrho \text { әı!̣nbəл әм } x \text { ио puәdәр of }(y) \text { д ұием ұои ор әм әэu!s }}$
You arrive at :

For the exact dynamics is similar: we need to choose an expression for the resumed propagator which
Since we do not want $\mathrm{P}(k)$ to depend on x we require
we transform

[^1]
НЭษ әчҰ ${ }^{\circ}$ व
 which we transform. We use the RegPT expression as a starting point. For the exact dynamics is similar: we start from a expression for the resumed propagator

Idy

(uo!sıə^ o!!gnd əuł u! 6nq
əןdu!s əmos ə^e૫ of К|ə૪!!)

$y\left[h^{-1} \mathrm{Mpc}\right]$

Conclusions

- We can in principle use GI to find a transformation of the
mode-coupling terms in these resumed PT theories which
will counter-act the transformation of the propagators
- The new, GI expressions, also improve the $\mathrm{k}_{\text {max }}$ reach of
these theories (maybe to $k_{\max } \sim 0.3$ at $\mathrm{z} \sim[1-2]$ at $<\sim 2 \%$)
- Using the same transformation seems to work similarly
well for velocity fields (which we have used RSD /BOSS)
- We are able to recover underlying cosmology in the mocks
for CMASS galaxies (also for other samples).

[^0]: where $I_{*} \equiv-k^{2} \sigma_{u}^{2}$

 Let's try to restore GI by imposing a field transformation

[^1]: flows.

