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scales m
uch sm

aller than the H
orizon (H

ubble radius)                   N
ew

tonian gravity 

scales larger than strong clustering regim
e                     single stream

 approxim
ation 

no velocity dispersion or pressure 
(prior to virialization and shell crossing) 

velocity field can be assum
ed irrotational  

N
onlinear Gravitational Clustering 
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N
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lustering

w
e assum

e the stress tensor is 
zero otherw

ise it generates 
corrections

�
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L
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Pow
er Spectrum

 :

all diagram
s of this type are system

atically put together

linear grow
th!

factor
one-loop 

correction

final den or vel field 
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•
its the cross-correlation w

ith IC
s !

•
it can be m

easured in n-body



Pow
er Spectrum

 :

all diagram
s of this type are system

atically put together

+ ..

M
ulti-point propagator expansions (M

PP,  .. Bernardeau, C
rocce &

 Sccocim
arro 2011)



R
esum

m
ation of IR

-m
odes

It is possible to show
 that w

hen you consider the high k lim
it, or in other w

ords the 
contribution to these integrals of m

odes q << k (IR-m
odes) the diagram

s sim
plify to
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This is the variance of the displacem

ent field,  its 
dom

inated by large scale flow
 (~ 6M

pc/h)

O
n very large scales w

e can use PT to!
com

pute corrections ( ~ P
13 )

high-k

low
-k

D
ifferent ansatz for M

PP lead to different prescriptionsR
egPT

M
PT

 breeze

.. and sim
ilarly for the higher-order propagators.
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Pow
er Spectrum

 (M
PT

breeze)!
perform

ance for different cosm
ological m

odels at z=
0

only few
 seconds of evaluation tim

e 

Pow
er S

pectrum
 (M

P
T

breeze) 
perform

ance for different cosm
ological m

odels at z = 0 (dedicated sim
s)
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S
P

T

!•  Each term
 is G

alilean Invariant 
(built of equal tim

e correlators)
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back to Z
eldovich

!•  Since w
e only resum

ed propagator m
odes, w

e broke the sym
m

etry



S
P

T

!•  Each term
 is G

alilean Invariant 
(built of equal tim

e correlators)
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back to Z
eldovich

!•  N
on-perturbative, non G

I !
!•  Perturbative (basically P

22 , 
P

33 ) non G
I!

!•  C
onvergence im

proves!
     (tow

ards large-scales)!



•
U

sing the (unequal tim
e) cross-correlations w

ith the initial conditions as basis is not 
optim

al because the bulk flow
 displacem

ents are large

Ideally w
e w

ant to do RPT in a fram
e that is m

oving w
ith the large-scale bulk flow

 to 
capture the m

otion of particles relative to it. Equal tim
e correlations do not depend 

on uniform
 displacem

ents (IR safe).

•
These induce strong “gaussian” dam

ping tow
ards high-k, w

e need m
any “loops” to 

restore pow
er

•
This problem

 is related to the breaking of G
alilean Invariance in RPT

large scale bulk m
otion



G
alilean Invariance

• C
hange of coordinates of the form

 :

• Equal tim
e correlators are !

invariant under G
T :

• The fields change as : 

• A
nd the velocity variance as :

• The perturbative PT term
s as :
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• O
ur m

otivation: Find a transform
ation to field variables that are m

ore 
efficient for re-sum

m
ations (or a reference fram

e).!

!•!W
e w

ill introduce a fam
ily of Random

 G
alilean Transform

ations 
 (RG

T). Since w
e know

 how
 the “resum

ed propagator” transform
s,  

w
e  look for a M

ode-C
oupling transform

ation to counter-act it.!

!•!The G
alilean Transform

ations w
ill be controlled by a stochastic 

 random
 field, assum

ed G
aussian. This field w

ill be uniform
 for each 

k-value (or in other w
ords w

e dem
and that it can only have structure 

on scales larger than the one w
e are looking at).!

!•!The Random
 G

T is hence controlled by the variance of this field
 

Som
e qualitative thoughts:



• W
e w

ill link this variance to the dynam
ics of the system

 in such a w
ay 

that in practice our final PT expressions w
ill be G

I!

!•!A
ny observable should be independent of this transform

ation if 
 com

puted fully non-perturbative. A
 finite calculation m

ight show
 

som
e dependence w

ith the G
RF.  !

!•!H
ence w

e choose the Random
 G

alilean Transform
ation in a w

ay that, 
 at the perturbative order w

e are w
orking, the dependence of the 

observable, e.g. P(k), w
ith the RG

T is m
inim

ised !

!•!O
ur intention is that this prescription w

ill bring us closer to the true 
 answ

er (som
ething that can be show

 explicitly w
ith ZA

). 

The approach in practice:



displacem
ent field

For ZA
 :

w
e pulled out the one-point cum

ulant !
(only 2nd order)

U
nder a change of the large-scale 

(non-uniform
) velocity field

If u only has structure on large 
scales  (uniform

 on scales w
e care)!

q << r then q r << 1 and        factors!
out of the I and sig integrals

Let’s see how
 this w

orks in the Zeldovich approxim
ation

�
2u

vel. field spectrum



The approach w
e discussed before basically does,

W
e can now

 pull out the propagator in the new
 variables, but the above expression w

ill be !
invariant order by order

A
nd you see how

 G
I is explicitly broken

Let’s try to restore G
I by im

posing a field transform
ation 

Zeldovich approxim
ation

I�
�
�

k
2�

2u
w

here



W
e can now

 expand this 
recalling that 
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You arrive at :

This is basically the 
variance of the RG

T!
discussed before

Since w
e do not w

ant P(k) to depend on x w
e require 

�
P

(k)/�
x

=
0

For exam
ple at 2nd order : 

A
t tw

o loops for ZA
 

There is som
e arbitrariness on the root 

but that’s ok

Zeldovich approxim
ation
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For the exact dynam
ics is sim

ilar: w
e need to choose an expression for the resum

ed propagator w
hich 

w
e transform

P(k) n-order / P(k) exact 

x

A
t fixed k = 0.1 h/M

pc

D
ifferent lines : orders in PT

Zeldovich approxim
ation

Since w
e do not w

ant P(k) to depend on x w
e require 



gR
P

T
 for the exact dynam

ics. 

For the exact dynam
ics is sim

ilar: w
e start from

 a expression for the resum
ed propagator !

w
hich w

e transform
. W

e use the RegPT expression as a starting point. 
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propagator in reg-PT form
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D
o the RG

T

express in term
s of invariants

C
hoose the appropriate value of x !

(the boost) to trace the large-scale 
flow

s.
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C
om

parison to R
egP

T
 / M

P
T

breeze  
(the other “state-of-the-art” fast algorithm

)

Im
proves from

 0.2 to 0.4 h
-1M

pc 
in a redshift range useful for  
E

uclid and D
E

S
I

(*) R
egP

T
fast perform

ance ~ M
P

T
breeze



C
onvergence of N

-body  
sim

ulations 
L

asD
am

as suite 



O
verall perform

ance w.r.t. som
e m

atter      
P

k  m
odels  

(none include  

free param
eters) 

0.3

0.4

0.5

C
arm

en



Esm
eralda

(likely to have som
e sim

ple 
bug in the public version)



gR
P

T
 for Velocity Fields

M
easuring velocity fields spectra requires careful estim

ation!
of volum

e w
eighted quantities (m

ass resolution im
portant)

U
se of D

elaunay Tesselation



gR
P

T
 for Velocity Fields

M
easuring velocity fields spectra requires careful estim

ation!
of volum

e w
eighted quantities (m

ass resolution im
portant)
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D
ashed lines and sym

bols w
ith!

error bars are tw
o estim

ators !
(dash corrects for m

ass resolution)

PRELIM
IN

A
RY !

M
ake sure no issues w

ith the estim
ator!

velocity dispersion effects 

SPT 1L

SPT 1LgRPT

gRPT



z=1.43

gR
P

T
 for Velocity Fields 

A
lternatively w

e com
pare to the fitting functions of Bel et al arxiv/1809.09338!

w
hich calibrate the deviation of velocity spectra w

.r.t. halo fit m
atter P(k)

z=1.43



R
ecovering cosm

ology w
ith biased  

tracers - M
inerva C

M
A

S
S

 m
ocks

!•!M
inerva: a set of 100 D

M
  N

-body 
 sim

ulations.!

!•!C
osm

ology from
 W

M
A

P+BO
SS D

R9!
 

!•!L
BO

X  = 1.5 G
pc/h, N = 1000

3!
 

!•!Snapshots at z = 0, 0.3, 0.57, 1 &
 2!

 

!•!G
alaxies w

ith H
O

D
 m

atching C
M

A
SS !

 
!!

at z = 0.57
    



S
ize of statistical  

+ system
atics 

error bars in B
O

S
S

  
data (~2%

)

R
ecovering cosm

ology w
ith biased  

tracers - M
inerva m

atter spectrum
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galaxy m

ocks

!•!
The bias m

odel has 4 nuisance param
eters:

  

b
1 ,b

2 ,�
1
2 ,�

2 (fixed
to

Loc.Lag.)

�
1
2
�

b
s

!•!
M

atter m
odel uses gRPT

  



C
onclusions

!•!W
e can in principle use G

I to find a transform
ation of the 

m
ode-coupling term

s in these resum
ed PT theories w

hich 
w

ill counter-act the transform
ation of the propagators!

!•!The new
, G

I expressions, also im
prove the k

m
ax  reach of 

these theories (m
aybe to k

m
ax  ~ 0.3 at z ~ [1-2] at <~ 2%

)!

•! U
sing the sam

e transform
ation seem

s to w
ork sim

ilarly 
 w

ell for velocity fields (w
hich w

e have used RSD
/BO

SS)!

!•!W
e are able to recover underlying cosm

ology in the m
ocks 

for C
M

A
SS galaxies (also for other sam

ples).


