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Background analysis. For every distance, this leads to define the associated multipoles δzℓm(r), and since the redshift-
space distortions do not break the statistical isotropy around the observer, the statistics is encoded in the diagonal
part of the multipoles correlations, that is

⟨δzℓm(r1)δ
z
ℓ′m′(r2)⟩ = δℓℓ′δmm′Cz

ℓ (r1, r2). (1.2)

Both the expression found with the configuration space approach in Papai and Szapudi (2008) and the one derived
with a multipole approach in Bonvin and Durrer (2011) are much more complicated than the simple original Kaiser
formula that holds in the plane-parallel limit. In this article, our second goal is to relate both approaches and to link
them with our perturbative expansion around the plane-parallel limit.

II. OVERVIEW OF RESULTS

A. Wide angle effects in configuration space

The structure of the correlation function depends only on the shape of a triangle formed by the observer and
the sources at r1 and r2. The plane-parallel limit corresponds to a squeezed configuration of this triangle where
r = r2 − r1 is much smaller in norm than r1 and r2. In order to expand the correlation functions around this plane-
parallel approximation, it appears more appropriate to consider the correlation functions as depending on r and the
median distance d as illustrated in Fig. 1, with the definitions

ξz(d, r) ≡ Cz(r1, r2) ≡ ⟨δz(r1)δz(r2)⟩ , r ≡ r2 − r1 , d ≡ r1 + r2

2
. (2.1)

In this article we give the general expression for the correlation function in configuration space, checking that we
recover the results of previously existing literature, and we then expand it around its plane-parallel limit so as to
grasp the structure of the wide angle corrections. We also show that instead of using the median position d as an
average position, it is possible to use the bisector to define another type of average position, as it leads to the same
plane-parallel limit.
If the correlation function was statistically homogeneous, then it would depend only on r, and not on d. And if it

was also statistically isotropic, it would actually depend only on one degree of freedom, r. This would be the case if
RSD effects were ignored. However the distorted field is not homogeneous as it also depends on the velocity of the
source with respect to the observer, and not just on the velocity independently. Nevertheless, the global rotational
invariance around the observer removes three degrees of freedom, implying that the correlation function is only a
function of three degrees of freedom which are r, d and µd r ≡ r̂ · d̂. In the plane-parallel limit, it depends on r and
µ, but not on d. It is thus appropriate to expand the general two point correlation function as a general angular
multipole expansion

ξz(d, r) =
∞∑

n=0

( r
d

)n ∞∑

ℓ=0

ξ(n)ℓ (r)Pℓ(µd r) , with µd r ≡ r̂ · d̂ . (2.2)

The ξ(0)ℓ are the lowest order coefficients which arise in the plane-parallel limit, and to be more precise, only ξ(0)0 , ξ(0)2 ,

ξ(0)4 are non-vanishing. The ξ(n>0)
ℓ describe then corrections due to wide angle effects. The natural small parameter

for this expansion is the ratio between the distance between two points being correlated, and their average distance
from the observer, that is r/d. The further the two points are with respect to the observer, the smaller the corrections
are. The geometrical structure at each order is described by the angular variable which depends only on the relative
directions between the difference of positions r and the average direction d, that is it depends only on µ. We find

that the coefficients ξ(n)ℓ in the expansion (2.2) are non-vanishing only if ℓ and n are either both odd or both even.
Furthermore, we show that for the median and the bisector parametrizations of the average distance, these coefficients

do not vanish only if ℓ and n are both even. As a consequence, the first order corrections ξ(1)ℓ vanish, and these choices

should thus be preferred to minimize the wide angle effects. In these cases, we compute explicitly the ξ(n)ℓ up to second
order providing the first set of corrections to the plane-parallel limit.

B. Wide angle effects in Fourier space

In order to understand how such expansion arises in Fourier space, one must first realize that when performing
a double Fourier transformation on a function whose variables are related in a triangular configuration, the Fourier
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FIG. 1 Effect of Fourier transform on variables constrained to a triangular geometry. The Fourier conjugate of r1 is k1, the
Fourier conjugate of r2 is k2; the Fourier conjugate of d is ∆k = k1 − k2, while the conjugate of r is k.

conjugate to the difference of positions r is the median Fourier modes k, and the Fourier conjugate to the median
distance d is the difference of the Fourier modes ∆k. This geometry of the Fourier space is illustrated in Fig. 1. This
basic geometrical relation can be understood in two steps. First, for α > 0, the Fourier transform of Cz(αr1, r2) is
1
αC

z(k1

α ,k2), i.e., dilatations (resp. contractions) in configuration space lead to contractions (resp. dilatations) in
Fourier space, and therefore if r1 is shorter than r2, k1 will be longer than k2. Secondly, when performing a Fourier
transformation on a two point correlation function, we introduce the product

eik1·r1e−ik2·r2 = eid·∆ke−ir·k , with k ≡ (k1 + k2)/2 , ∆k ≡ k1 − k2 , (2.3)

from where the crossed conjugate relation among median and difference of modes can be inferred. It is thus natural
to define the correlation function in Fourier space using these variables as

ζz(∆k,k) ≡ Cz(k1,k2) ≡ ⟨δz(k1)δ
z⋆(k2)⟩ . (2.4)

The homogeneity in Fourier space is expressed by the fact that the correlation function depends only on the average
Fourier mode, and not on the difference. The inhomogeneity introduced by the RSD effects translates into the fact
that in Fourier space there are off-diagonal correlations. In this article, we derive the general expression for the
correlation function in Fourier space and exhibit the off-diagonal contributions. Following the correspondence (2.3),
the corrections introduced should be expressed as an expansion in |∆k|/k in the form

ζz(∆k,k) = δD(∆k)ζ(0)0 (k) +
1

4π|∆k|3
∞∑

n=0

(
|∆k|
k

)n ∞∑

ℓ=0
(ℓ,n)≠(0,0)

ζ(n)ℓ (k)Pℓ(µk∆) , with µk∆ ≡ k̂ · ∆̂k . (2.5)

The ζ(0)ℓ (k) correspond to the homogeneous contribution of the plane-parallel limit, for which only ζ(0)0 , ζ(0)2 , ζ(0)4 are

non vanishing. The ζ(n>0)
ℓ are the wide angle corrections which break homogeneity. For each order, the geometrical

dependence is only a function of the angle between the average Fourier modes and the difference of the Fourier modes,
and this is understood from the correspondence (2.3). We do not perform such expansion explicitly except for the
lowest order corresponding to the plane-parallel limit.

C. Wide-angle effects in mixed configuration/Fourier space

In fact the RSD effects can also be apprehended using a mixed space, where the median distance is looked at in
configuration space, but the dependence in the separation of the sources is considered in Fourier space. This can be
obtained either by Fourier transforming the r dependence, that is considering ξ̂z(d,k) instead of in ξz(d, r), or by

inverse Fourier transforming the ∆k dependence, that is by considering ζ̃z(d,k) instead of ζz(∆k,k). We check that
both approaches lead to the same result as they ought to. In this mixed space the natural expansion is

ξ̂z(d,k) = ζ̃z(d,k) =
∞∑

n=0

(
1

kd

)n ∞∑

ℓ=0

P(n)
ℓ (k)Pℓ(µk d) , µkd ≡ k̂ · d̂ . (2.6)
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FIG. 1 Effect of Fourier transform on variables constrained to a triangular geometry. The Fourier conjugate of r1 is k1, the
Fourier conjugate of r2 is k2; the Fourier conjugate of d is ∆k = k1 − k2, while the conjugate of r is k.
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(
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k
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The ζ(0)ℓ (k) correspond to the homogeneous contribution of the plane-parallel limit, for which only ζ(0)0 , ζ(0)2 , ζ(0)4 are

non vanishing. The ζ(n>0)
ℓ are the wide angle corrections which break homogeneity. For each order, the geometrical

dependence is only a function of the angle between the average Fourier modes and the difference of the Fourier modes,
and this is understood from the correspondence (2.3). We do not perform such expansion explicitly except for the
lowest order corresponding to the plane-parallel limit.

C. Wide-angle effects in mixed configuration/Fourier space

In fact the RSD effects can also be apprehended using a mixed space, where the median distance is looked at in
configuration space, but the dependence in the separation of the sources is considered in Fourier space. This can be
obtained either by Fourier transforming the r dependence, that is considering ξ̂z(d,k) instead of in ξz(d, r), or by

inverse Fourier transforming the ∆k dependence, that is by considering ζ̃z(d,k) instead of ζz(∆k,k). We check that
both approaches lead to the same result as they ought to. In this mixed space the natural expansion is

ξ̂z(d,k) = ζ̃z(d,k) =
∞∑

n=0

(
1

kd

)n ∞∑

ℓ=0

P(n)
ℓ (k)Pℓ(µk d) , µkd ≡ k̂ · d̂ . (2.6)
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<latexit sha1_base64="lc5VwUVDkGyvKNvfk5fgju1d92w=">AAACE3icbVC7TsMwFHV4lvIKMLJYVEiFoUoQEoipgoWxIPqQmhA5rtNadZzIdhBVlH9g4VdYGECIlYWNv8FpM5SWI1k6Pude3XuPHzMqlWX9GAuLS8srq6W18vrG5ta2ubPbklEiMGniiEWi4yNJGOWkqahipBMLgkKfkbY/vMr99gMRkkb8To1i4oaoz2lAMVJa8sxj55F6DmHsPq3yowxeQCdEauD76W0GHRVNfT2zYtWsMeA8sQtSAQUanvnt9CKchIQrzJCUXduKlZsioShmJCs7iSQxwkPUJ11NOQqJdNPxTRk81EoPBpHQjys4Vqc7UhRKOQp9XZlvKGe9XPzP6yYqOHdTyuNEEY4ng4KEQX1rHhDsUUGwYiNNEBZU7wrxAAmElY6xrEOwZ0+eJ62Tmm3V7JvTSv2yiKME9sEBqAIbnIE6uAYN0AQYPIEX8AbejWfj1fgwPielC0bRswf+wPj6BTFrnbo=</latexit><latexit sha1_base64="lc5VwUVDkGyvKNvfk5fgju1d92w=">AAACE3icbVC7TsMwFHV4lvIKMLJYVEiFoUoQEoipgoWxIPqQmhA5rtNadZzIdhBVlH9g4VdYGECIlYWNv8FpM5SWI1k6Pude3XuPHzMqlWX9GAuLS8srq6W18vrG5ta2ubPbklEiMGniiEWi4yNJGOWkqahipBMLgkKfkbY/vMr99gMRkkb8To1i4oaoz2lAMVJa8sxj55F6DmHsPq3yowxeQCdEauD76W0GHRVNfT2zYtWsMeA8sQtSAQUanvnt9CKchIQrzJCUXduKlZsioShmJCs7iSQxwkPUJ11NOQqJdNPxTRk81EoPBpHQjys4Vqc7UhRKOQp9XZlvKGe9XPzP6yYqOHdTyuNEEY4ng4KEQX1rHhDsUUGwYiNNEBZU7wrxAAmElY6xrEOwZ0+eJ62Tmm3V7JvTSv2yiKME9sEBqAIbnIE6uAYN0AQYPIEX8AbejWfj1fgwPielC0bRswf+wPj6BTFrnbo=</latexit><latexit sha1_base64="lc5VwUVDkGyvKNvfk5fgju1d92w=">AAACE3icbVC7TsMwFHV4lvIKMLJYVEiFoUoQEoipgoWxIPqQmhA5rtNadZzIdhBVlH9g4VdYGECIlYWNv8FpM5SWI1k6Pude3XuPHzMqlWX9GAuLS8srq6W18vrG5ta2ubPbklEiMGniiEWi4yNJGOWkqahipBMLgkKfkbY/vMr99gMRkkb8To1i4oaoz2lAMVJa8sxj55F6DmHsPq3yowxeQCdEauD76W0GHRVNfT2zYtWsMeA8sQtSAQUanvnt9CKchIQrzJCUXduKlZsioShmJCs7iSQxwkPUJ11NOQqJdNPxTRk81EoPBpHQjys4Vqc7UhRKOQp9XZlvKGe9XPzP6yYqOHdTyuNEEY4ng4KEQX1rHhDsUUGwYiNNEBZU7wrxAAmElY6xrEOwZ0+eJ62Tmm3V7JvTSv2yiKME9sEBqAIbnIE6uAYN0AQYPIEX8AbejWfj1fgwPielC0bRswf+wPj6BTFrnbo=</latexit><latexit sha1_base64="lc5VwUVDkGyvKNvfk5fgju1d92w=">AAACE3icbVC7TsMwFHV4lvIKMLJYVEiFoUoQEoipgoWxIPqQmhA5rtNadZzIdhBVlH9g4VdYGECIlYWNv8FpM5SWI1k6Pude3XuPHzMqlWX9GAuLS8srq6W18vrG5ta2ubPbklEiMGniiEWi4yNJGOWkqahipBMLgkKfkbY/vMr99gMRkkb8To1i4oaoz2lAMVJa8sxj55F6DmHsPq3yowxeQCdEauD76W0GHRVNfT2zYtWsMeA8sQtSAQUanvnt9CKchIQrzJCUXduKlZsioShmJCs7iSQxwkPUJ11NOQqJdNPxTRk81EoPBpHQjys4Vqc7UhRKOQp9XZlvKGe9XPzP6yYqOHdTyuNEEY4ng4KEQX1rHhDsUUGwYiNNEBZU7wrxAAmElY6xrEOwZ0+eJ62Tmm3V7JvTSv2yiKME9sEBqAIbnIE6uAYN0AQYPIEX8AbejWfj1fgwPielC0bRswf+wPj6BTFrnbo=</latexit>

⇣(n)` : R ! C
<latexit sha1_base64="Tl72Xhr6S4yvrHXnFN2lTK8o2s0=">AAACFXicbVDLSgMxFM3UV62vUZdugkWoIGVGBMVVsRuXVewDOrVk0ts2NJMZkoxQh/kJN/6KGxeKuBXc+TemD0RbDwROzrmXe+/xI86UdpwvK7OwuLS8kl3Nra1vbG7Z2zs1FcaSQpWGPJQNnyjgTEBVM82hEUkggc+h7g/KI79+B1KxUNzoYQStgPQE6zJKtJHa9pF3D5q0PeD8NimIwxSfYy8guu/7yXWKPR3+fMtp2847RWcMPE/cKcmjKSpt+9PrhDQOQGjKiVJN14l0KyFSM8ohzXmxgojQAelB01BBAlCtZHxVig+M0sHdUJonNB6rvzsSEig1DHxTOdpQzXoj8T+vGevuWSthIoo1CDoZ1I05NreOIsIdJoFqPjSEUMnMrpj2iSRUmyBzJgR39uR5Ujsuuk7RvTrJly6mcWTRHtpHBeSiU1RCl6iCqoiiB/SEXtCr9Wg9W2/W+6Q0Y017dtEfWB/fyDiekg==</latexit><latexit sha1_base64="Tl72Xhr6S4yvrHXnFN2lTK8o2s0=">AAACFXicbVDLSgMxFM3UV62vUZdugkWoIGVGBMVVsRuXVewDOrVk0ts2NJMZkoxQh/kJN/6KGxeKuBXc+TemD0RbDwROzrmXe+/xI86UdpwvK7OwuLS8kl3Nra1vbG7Z2zs1FcaSQpWGPJQNnyjgTEBVM82hEUkggc+h7g/KI79+B1KxUNzoYQStgPQE6zJKtJHa9pF3D5q0PeD8NimIwxSfYy8guu/7yXWKPR3+fMtp2847RWcMPE/cKcmjKSpt+9PrhDQOQGjKiVJN14l0KyFSM8ohzXmxgojQAelB01BBAlCtZHxVig+M0sHdUJonNB6rvzsSEig1DHxTOdpQzXoj8T+vGevuWSthIoo1CDoZ1I05NreOIsIdJoFqPjSEUMnMrpj2iSRUmyBzJgR39uR5Ujsuuk7RvTrJly6mcWTRHtpHBeSiU1RCl6iCqoiiB/SEXtCr9Wg9W2/W+6Q0Y017dtEfWB/fyDiekg==</latexit><latexit sha1_base64="Tl72Xhr6S4yvrHXnFN2lTK8o2s0=">AAACFXicbVDLSgMxFM3UV62vUZdugkWoIGVGBMVVsRuXVewDOrVk0ts2NJMZkoxQh/kJN/6KGxeKuBXc+TemD0RbDwROzrmXe+/xI86UdpwvK7OwuLS8kl3Nra1vbG7Z2zs1FcaSQpWGPJQNnyjgTEBVM82hEUkggc+h7g/KI79+B1KxUNzoYQStgPQE6zJKtJHa9pF3D5q0PeD8NimIwxSfYy8guu/7yXWKPR3+fMtp2847RWcMPE/cKcmjKSpt+9PrhDQOQGjKiVJN14l0KyFSM8ohzXmxgojQAelB01BBAlCtZHxVig+M0sHdUJonNB6rvzsSEig1DHxTOdpQzXoj8T+vGevuWSthIoo1CDoZ1I05NreOIsIdJoFqPjSEUMnMrpj2iSRUmyBzJgR39uR5Ujsuuk7RvTrJly6mcWTRHtpHBeSiU1RCl6iCqoiiB/SEXtCr9Wg9W2/W+6Q0Y017dtEfWB/fyDiekg==</latexit><latexit sha1_base64="Tl72Xhr6S4yvrHXnFN2lTK8o2s0=">AAACFXicbVDLSgMxFM3UV62vUZdugkWoIGVGBMVVsRuXVewDOrVk0ts2NJMZkoxQh/kJN/6KGxeKuBXc+TemD0RbDwROzrmXe+/xI86UdpwvK7OwuLS8kl3Nra1vbG7Z2zs1FcaSQpWGPJQNnyjgTEBVM82hEUkggc+h7g/KI79+B1KxUNzoYQStgPQE6zJKtJHa9pF3D5q0PeD8NimIwxSfYy8guu/7yXWKPR3+fMtp2847RWcMPE/cKcmjKSpt+9PrhDQOQGjKiVJN14l0KyFSM8ohzXmxgojQAelB01BBAlCtZHxVig+M0sHdUJonNB6rvzsSEig1DHxTOdpQzXoj8T+vGevuWSthIoo1CDoZ1I05NreOIsIdJoFqPjSEUMnMrpj2iSRUmyBzJgR39uR5Ujsuuk7RvTrJly6mcWTRHtpHBeSiU1RCl6iCqoiiB/SEXtCr9Wg9W2/W+6Q0Y017dtEfWB/fyDiekg==</latexit>

P(n)
` : R ! C

<latexit sha1_base64="DkTy1TUHp9QfK4JU7oN1gV7AOK4=">AAACG3icbVDLSsNAFJ34rPUVdelmsAh1U5IiKK6K3bisYh/QxDCZTtuhk0mYmQgl5D/c+CtuXCjiSnDh3zhJg2jrgYEz59zLvff4EaNSWdaXsbS8srq2Xtoob25t7+yae/sdGcYCkzYOWSh6PpKEUU7aiipGepEgKPAZ6fqTZuZ374mQNOS3ahoRN0AjTocUI6Ulz6w7AVJjjFjSSj2HMHaXVPlJCi9gbvh+cpNCR4U/32bqmRWrZuWAi8QuSAUUaHnmhzMIcRwQrjBDUvZtK1JugoSimJG07MSSRAhP0Ij0NeUoINJN8ttSeKyVARyGQj+uYK7+7khQIOU08HVltqGc9zLxP68fq+G5m1AexYpwPBs0jBnUt2ZBwQEVBCs21QRhQfWuEI+RQFjpOMs6BHv+5EXSqddsq2Zfn1Yal0UcJXAIjkAV2OAMNMAVaIE2wOABPIEX8Go8Gs/Gm/E+K10yip4D8AfG5zfII6E8</latexit><latexit sha1_base64="DkTy1TUHp9QfK4JU7oN1gV7AOK4=">AAACG3icbVDLSsNAFJ34rPUVdelmsAh1U5IiKK6K3bisYh/QxDCZTtuhk0mYmQgl5D/c+CtuXCjiSnDh3zhJg2jrgYEz59zLvff4EaNSWdaXsbS8srq2Xtoob25t7+yae/sdGcYCkzYOWSh6PpKEUU7aiipGepEgKPAZ6fqTZuZ374mQNOS3ahoRN0AjTocUI6Ulz6w7AVJjjFjSSj2HMHaXVPlJCi9gbvh+cpNCR4U/32bqmRWrZuWAi8QuSAUUaHnmhzMIcRwQrjBDUvZtK1JugoSimJG07MSSRAhP0Ij0NeUoINJN8ttSeKyVARyGQj+uYK7+7khQIOU08HVltqGc9zLxP68fq+G5m1AexYpwPBs0jBnUt2ZBwQEVBCs21QRhQfWuEI+RQFjpOMs6BHv+5EXSqddsq2Zfn1Yal0UcJXAIjkAV2OAMNMAVaIE2wOABPIEX8Go8Gs/Gm/E+K10yip4D8AfG5zfII6E8</latexit><latexit sha1_base64="DkTy1TUHp9QfK4JU7oN1gV7AOK4=">AAACG3icbVDLSsNAFJ34rPUVdelmsAh1U5IiKK6K3bisYh/QxDCZTtuhk0mYmQgl5D/c+CtuXCjiSnDh3zhJg2jrgYEz59zLvff4EaNSWdaXsbS8srq2Xtoob25t7+yae/sdGcYCkzYOWSh6PpKEUU7aiipGepEgKPAZ6fqTZuZ374mQNOS3ahoRN0AjTocUI6Ulz6w7AVJjjFjSSj2HMHaXVPlJCi9gbvh+cpNCR4U/32bqmRWrZuWAi8QuSAUUaHnmhzMIcRwQrjBDUvZtK1JugoSimJG07MSSRAhP0Ij0NeUoINJN8ttSeKyVARyGQj+uYK7+7khQIOU08HVltqGc9zLxP68fq+G5m1AexYpwPBs0jBnUt2ZBwQEVBCs21QRhQfWuEI+RQFjpOMs6BHv+5EXSqddsq2Zfn1Yal0UcJXAIjkAV2OAMNMAVaIE2wOABPIEX8Go8Gs/Gm/E+K10yip4D8AfG5zfII6E8</latexit><latexit sha1_base64="DkTy1TUHp9QfK4JU7oN1gV7AOK4=">AAACG3icbVDLSsNAFJ34rPUVdelmsAh1U5IiKK6K3bisYh/QxDCZTtuhk0mYmQgl5D/c+CtuXCjiSnDh3zhJg2jrgYEz59zLvff4EaNSWdaXsbS8srq2Xtoob25t7+yae/sdGcYCkzYOWSh6PpKEUU7aiipGepEgKPAZ6fqTZuZ374mQNOS3ahoRN0AjTocUI6Ulz6w7AVJjjFjSSj2HMHaXVPlJCi9gbvh+cpNCR4U/32bqmRWrZuWAi8QuSAUUaHnmhzMIcRwQrjBDUvZtK1JugoSimJG07MSSRAhP0Ij0NeUoINJN8ttSeKyVARyGQj+uYK7+7khQIOU08HVltqGc9zLxP68fq+G5m1AexYpwPBs0jBnUt2ZBwQEVBCs21QRhQfWuEI+RQFjpOMs6BHv+5EXSqddsq2Zfn1Yal0UcJXAIjkAV2OAMNMAVaIE2wOABPIEX8Go8Gs/Gm/E+K10yip4D8AfG5zfII6E8</latexit>

small 
parameterExpansions around plane parallel limit  (n = 0) 
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δz(r)

C (k1, k2)

δ		(r) ℓm
z

δ			(k)ℓm
z

C (r1, r2)
z
ℓ

z
ℓ

C (r1, r2)
z

C (k1, k2)
z

C  (r1, r2)
z
pp

C  (k1, k2)
z
pp

Configuration space: general formula for 
wide angle effects and small angle limit

Fourier space: general formula and mode 
coupling

Mixed space: where P(k) can be defined; 
Kaiser formula at the limit
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<latexit sha1_base64="t1eFAqmAyLujQS3vBwN4FpxaDmA="></latexit><latexit sha1_base64="t1eFAqmAyLujQS3vBwN4FpxaDmA="></latexit><latexit sha1_base64="t1eFAqmAyLujQS3vBwN4FpxaDmA="></latexit><latexit sha1_base64="t1eFAqmAyLujQS3vBwN4FpxaDmA="></latexit>

✓ =
@ivi

H
=

4V

H
= ���

<latexit sha1_base64="XcWYs3cSNrijWzPWzhoafiTKxnk="></latexit><latexit sha1_base64="XcWYs3cSNrijWzPWzhoafiTKxnk="></latexit><latexit sha1_base64="XcWYs3cSNrijWzPWzhoafiTKxnk="></latexit><latexit sha1_base64="XcWYs3cSNrijWzPWzhoafiTKxnk="></latexit>

linear perturbations 
no vorticity 
linear  bias

The volume in redshift space is affected by the divergence of the 
displacement field     , and this translates into a modification of the 
density with an opposite sign.

↵i
<latexit sha1_base64="MDzR1ons9qUy8ZFAUl1vopHRAWk=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cKpi20oUy2m3bpZhN3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZemAqujet+O6W19Y3NrfJ2ZWd3b/+genjU0kmmKPNpIhLVCVEzwSXzDTeCdVLFMA4Fa4fj25nffmJK80Q+mEnKghiHkkecorFSp4ciHWGf96s1t+7OQVaJV5AaFGj2q1+9QUKzmElDBWrd9dzUBDkqw6lg00ov0yxFOsYh61oqMWY6yOf3TsmZVQYkSpQtachc/T2RY6z1JA5tZ4xmpJe9mfif181MdB3kXKaZYZIuFkWZICYhs+fJgCtGjZhYglRxeyuhI1RIjY2oYkPwll9eJa2LuufWvfvLWuOmiKMMJ3AK5+DBFTTgDprgAwUBz/AKb86j8+K8Ox+L1pJTzBzDHzifPwnAj/Q=</latexit><latexit sha1_base64="MDzR1ons9qUy8ZFAUl1vopHRAWk=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cKpi20oUy2m3bpZhN3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZemAqujet+O6W19Y3NrfJ2ZWd3b/+genjU0kmmKPNpIhLVCVEzwSXzDTeCdVLFMA4Fa4fj25nffmJK80Q+mEnKghiHkkecorFSp4ciHWGf96s1t+7OQVaJV5AaFGj2q1+9QUKzmElDBWrd9dzUBDkqw6lg00ov0yxFOsYh61oqMWY6yOf3TsmZVQYkSpQtachc/T2RY6z1JA5tZ4xmpJe9mfif181MdB3kXKaZYZIuFkWZICYhs+fJgCtGjZhYglRxeyuhI1RIjY2oYkPwll9eJa2LuufWvfvLWuOmiKMMJ3AK5+DBFTTgDprgAwUBz/AKb86j8+K8Ox+L1pJTzBzDHzifPwnAj/Q=</latexit><latexit sha1_base64="MDzR1ons9qUy8ZFAUl1vopHRAWk=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cKpi20oUy2m3bpZhN3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZemAqujet+O6W19Y3NrfJ2ZWd3b/+genjU0kmmKPNpIhLVCVEzwSXzDTeCdVLFMA4Fa4fj25nffmJK80Q+mEnKghiHkkecorFSp4ciHWGf96s1t+7OQVaJV5AaFGj2q1+9QUKzmElDBWrd9dzUBDkqw6lg00ov0yxFOsYh61oqMWY6yOf3TsmZVQYkSpQtachc/T2RY6z1JA5tZ4xmpJe9mfif181MdB3kXKaZYZIuFkWZICYhs+fJgCtGjZhYglRxeyuhI1RIjY2oYkPwll9eJa2LuufWvfvLWuOmiKMMJ3AK5+DBFTTgDprgAwUBz/AKb86j8+K8Ox+L1pJTzBzDHzifPwnAj/Q=</latexit><latexit sha1_base64="MDzR1ons9qUy8ZFAUl1vopHRAWk=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cKpi20oUy2m3bpZhN3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZemAqujet+O6W19Y3NrfJ2ZWd3b/+genjU0kmmKPNpIhLVCVEzwSXzDTeCdVLFMA4Fa4fj25nffmJK80Q+mEnKghiHkkecorFSp4ciHWGf96s1t+7OQVaJV5AaFGj2q1+9QUKzmElDBWrd9dzUBDkqw6lg00ov0yxFOsYh61oqMWY6yOf3TsmZVQYkSpQtachc/T2RY6z1JA5tZ4xmpJe9mfif181MdB3kXKaZYZIuFkWZICYhs+fJgCtGjZhYglRxeyuhI1RIjY2oYkPwll9eJa2LuufWvfvLWuOmiKMMJ3AK5+DBFTTgDprgAwUBz/AKb86j8+K8Ox+L1pJTzBzDHzifPwnAj/Q=</latexit>

si = xi + ↵i
<latexit sha1_base64="nRLJ8aFdQeV8ogS/jLPKhZMNBOg=">AAAB/XicbVDJSgNBEK1xjXEbl5uXxiAIQpgRQS9C0IvHCGaBZBJqOj1Jk56F7h4xDsFf8eJBEa/+hzf/xs5y0MQHVTzeq6Krn58IrrTjfFsLi0vLK6u5tfz6xubWtr2zW1VxKimr0FjEsu6jYoJHrKK5FqyeSIahL1jN71+P/No9k4rH0Z0eJMwLsRvxgFPURmrb+6rFySV5MP2ENFEkPWzxtl1wis4YZJ64U1KAKcpt+6vZiWkaskhTgUo1XCfRXoZScyrYMN9MFUuQ9rHLGoZGGDLlZePrh+TIKB0SxNJUpMlY/b2RYajUIPTNZIi6p2a9kfif10h1cOFlPEpSzSI6eShIBdExGUVBOlwyqsXAEKSSm1sJ7aFEqk1geROCO/vleVI9LbpO0b09K5SupnHk4AAO4RhcOIcS3EAZKkDhEZ7hFd6sJ+vFerc+JqML1nRnD/7A+vwBjAuT/Q==</latexit><latexit sha1_base64="nRLJ8aFdQeV8ogS/jLPKhZMNBOg=">AAAB/XicbVDJSgNBEK1xjXEbl5uXxiAIQpgRQS9C0IvHCGaBZBJqOj1Jk56F7h4xDsFf8eJBEa/+hzf/xs5y0MQHVTzeq6Krn58IrrTjfFsLi0vLK6u5tfz6xubWtr2zW1VxKimr0FjEsu6jYoJHrKK5FqyeSIahL1jN71+P/No9k4rH0Z0eJMwLsRvxgFPURmrb+6rFySV5MP2ENFEkPWzxtl1wis4YZJ64U1KAKcpt+6vZiWkaskhTgUo1XCfRXoZScyrYMN9MFUuQ9rHLGoZGGDLlZePrh+TIKB0SxNJUpMlY/b2RYajUIPTNZIi6p2a9kfif10h1cOFlPEpSzSI6eShIBdExGUVBOlwyqsXAEKSSm1sJ7aFEqk1geROCO/vleVI9LbpO0b09K5SupnHk4AAO4RhcOIcS3EAZKkDhEZ7hFd6sJ+vFerc+JqML1nRnD/7A+vwBjAuT/Q==</latexit><latexit sha1_base64="nRLJ8aFdQeV8ogS/jLPKhZMNBOg=">AAAB/XicbVDJSgNBEK1xjXEbl5uXxiAIQpgRQS9C0IvHCGaBZBJqOj1Jk56F7h4xDsFf8eJBEa/+hzf/xs5y0MQHVTzeq6Krn58IrrTjfFsLi0vLK6u5tfz6xubWtr2zW1VxKimr0FjEsu6jYoJHrKK5FqyeSIahL1jN71+P/No9k4rH0Z0eJMwLsRvxgFPURmrb+6rFySV5MP2ENFEkPWzxtl1wis4YZJ64U1KAKcpt+6vZiWkaskhTgUo1XCfRXoZScyrYMN9MFUuQ9rHLGoZGGDLlZePrh+TIKB0SxNJUpMlY/b2RYajUIPTNZIi6p2a9kfif10h1cOFlPEpSzSI6eShIBdExGUVBOlwyqsXAEKSSm1sJ7aFEqk1geROCO/vleVI9LbpO0b09K5SupnHk4AAO4RhcOIcS3EAZKkDhEZ7hFd6sJ+vFerc+JqML1nRnD/7A+vwBjAuT/Q==</latexit><latexit sha1_base64="nRLJ8aFdQeV8ogS/jLPKhZMNBOg=">AAAB/XicbVDJSgNBEK1xjXEbl5uXxiAIQpgRQS9C0IvHCGaBZBJqOj1Jk56F7h4xDsFf8eJBEa/+hzf/xs5y0MQHVTzeq6Krn58IrrTjfFsLi0vLK6u5tfz6xubWtr2zW1VxKimr0FjEsu6jYoJHrKK5FqyeSIahL1jN71+P/No9k4rH0Z0eJMwLsRvxgFPURmrb+6rFySV5MP2ENFEkPWzxtl1wis4YZJ64U1KAKcpt+6vZiWkaskhTgUo1XCfRXoZScyrYMN9MFUuQ9rHLGoZGGDLlZePrh+TIKB0SxNJUpMlY/b2RYajUIPTNZIi6p2a9kfif10h1cOFlPEpSzSI6eShIBdExGUVBOlwyqsXAEKSSm1sJ7aFEqk1geROCO/vleVI9LbpO0b09K5SupnHk4AAO4RhcOIcS3EAZKkDhEZ7hFd6sJ+vFerc+JqML1nRnD/7A+vwBjAuT/Q==</latexit>
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where ν is the cosine of the polar angle and ϕ the azimuthal angle of r̂ in a spherical coordinates system. When it
brings no ambiguity, we will omit the index in L2

r̂. We then get from Eq. (3.11) an equivalent relation between the
two types of densities which is

δz(r) = (1 + β)δ(r) − β

r2
L2
r̂ ∆

−1δ(r) . (3.13)

We emphasize that we assume a constant selection function, and also that β and P(k) are assumed to have no time
dependence.

B. Redshift-space distortions in configuration space

1. General expression of the correlation function

We first start by deriving the two-point correlation function of distorted densities in configuration space, using the
previous relation (3.11). We do not assume that the angle separation is small to begin with, so as to obtain the most
general expression. In the next section, we then detail how we can recover the usual plane-parallel limit, known as
the Kaiser formula. The statistics of the fundamental field δ is known in Fourier space, as it is given by the matter
power spectrum defined by

C(k1,k2) ≡ ⟨δ(k1)δ
⋆(k2)⟩ = P(k)δD(k1 − k2) . (3.14)

Hence, we first need to obtain the distorted field δz in configuration space as a function of the underlying density field
δ in Fourier space. Given that the Fourier transform of ∆−1δ is −δ(k)/k2, we get immediately from Eq. (3.11) that
this relation takes the form

δz(r) =

∫
d3k

(2π)3/2
δ(k)

[
1− β

k2
Or

]
eik·r . (3.15)

Correlating the distorted field in two different points, we use Eq. (3.14) to remove one of the two Fourier integrals,
and the other one is performed easily in spherical coordinates once the exponential is expanded in spherical harmonics
with the Rayleigh expansion (A8). We finally obtain

Cz(r1, r2) =

∫
k2dk

2π2
P(k)

[
1− β

k2
Or1

] [
1− β

k2
Or2

]
j0(kr) , (3.16)

where we have defined the difference of positions and the associated norm as

r ≡ r2 − r1 , r2 = r21 + r22 − 2r1r2ν12 , ν12 ≡ r̂1 · r̂2 . (3.17)

In order to express the radial operators Or1 and Or2 , we first use that

∆ = Or1 +
L2
r̂1

r21
= Or2 +

L2
r̂2

r22
. (3.18)

We then note that the radial operators are only applied on a function of r in Eq. (3.16), where r, r1 and r2 are in a
triangular configuration. For any function f(r)

Or1f(r) = ∆f(r)− 1

r21
L2
r̂1
f(r) = Orf(r) −

L2
ν12

r21
f(r) , Or2f(r) = Orf(r) −

L2
ν12

r22
f(r) (3.19)

where we have used i) that for a function of r only, the Laplacian reduces to Or, the partial derivative ∂r becoming
in that case total derivatives, and ii) that the angular operators L2

r̂1
and L2

r̂2
do not depend on the azimuthal angle,

as they depend only on the polar angle, and thus both reduce to L2
ν12 .

With these relations and Eq. (A7) we can recast (3.16) as

Cz(r1, r2) =

∫
k2dk

2π2
P(k)I [j0(kr)] , I [j0(kr)] ≡

[
1 + β +

βL2
ν12

(kr1)2

] [
1 + β +

βL2
ν12

(kr2)2

]
j0(kr) . (3.20)

Note that this result could also have been obtained by using the relation (3.13) between the distorted and the
underlying matter densities. This expression for the correlation function in configuration space is the first major

F [4�1�] = ��(k)

k2
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Two recurrence relations satisfied by Jℓ are of particular interest

J ′
ℓ(x) =

Jℓ−1(x) − Jℓ+1(x)

2

Jℓ(x)

x
=

Jℓ+1(x) + Jℓ−1(x)

2ℓ
. (A4)

Finally, for all ℓ ∈ N, the Bessel functions can be generated from J0 from

Jℓ(x) = xℓ

(
− d

xdx

)ℓ

J0(x) . (A5)

2. Spherical Bessel functions

The spherical Bessel functions are related to Bessel functions of the first kind by

jℓ(x) ≡
√

2

πx
Jℓ+1/2(x) (A6)

and they are the solutions regular at the origin of the differential equation

1

r2
d

dr

[
r2

d

dr
jℓ(r)

]
=

(
ℓ(ℓ+ 1)

r2
− 1

)
jℓ(r) . (A7)

The spherical Bessel functions appear naturally in a spherical geometry when a plane wave is expanded into spherical
harmonics or Legendre polynomials. Indeed, this is given by the Rayleigh expansion which is

eir·k = 4π
∑

ℓm

iℓjℓ(kr)Yℓm(r̂)Y⋆
ℓm(k̂) =

∑

ℓ

(2ℓ+ 1)iℓjℓ(kr)Pℓ(k̂ · r̂) (A8)

where the Yℓm are the spherical harmonics and the Pℓ are the Legendre polynomials. Two recurrence relations
satisfied by jℓ(x) are particularly useful

jℓ(x)

x
=

jℓ+1(x) + jℓ−1(x)

2ℓ+ 1
(A9)

(2ℓ+ 1)j′ℓ(x) = ℓjℓ−1(x)− (ℓ + 1)jℓ+1(x) . (A10)

Spherical Bessel functions for any n ∈ N can be obtained from j0(x) thanks to

jℓ(x) = (−1)ℓxℓ

(
1

x

d

dx

)ℓ

j0(x) , j0(x) =
sinx

x
. (A11)

If r = r2−r1, then eik·r = eik·(r2−r1). The Rayleigh expansion (A8) and the addition theorem for Legendre polynomials
(A24) imply that

j0(kr) =
∑

ℓ

(2ℓ+ 1)jℓ(kr1)jℓ(kr2)Pℓ(r̂1 · r̂2) (A12)

where r, r1, and r2 must form a triangle (r2 = r21 + r22 − 2r1r2r̂1 · r̂2). Note that this is a special case of Gegenbauer
addition theorem (Watson, 1944) (Eq. (3) on Sec. 11.4). The spherical Bessel functions satisfy the orthogonality
relation

∫
drr2jℓ(ar)jℓ(br) =

π

2ab
δD(a− b) . (A13)
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where ν is the cosine of the polar angle and ϕ the azimuthal angle of r̂ in a spherical coordinates system. When it
brings no ambiguity, we will omit the index in L2

r̂. We then get from Eq. (3.11) an equivalent relation between the
two types of densities which is

δz(r) = (1 + β)δ(r) − β
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We emphasize that we assume a constant selection function, and also that β and P(k) are assumed to have no time
dependence.
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general expression. In the next section, we then detail how we can recover the usual plane-parallel limit, known as
the Kaiser formula. The statistics of the fundamental field δ is known in Fourier space, as it is given by the matter
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We then note that the radial operators are only applied on a function of r in Eq. (3.16), where r, r1 and r2 are in a
triangular configuration. For any function f(r)
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where we have used i) that for a function of r only, the Laplacian reduces to Or, the partial derivative ∂r becoming
in that case total derivatives, and ii) that the angular operators L2
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as they depend only on the polar angle, and thus both reduce to L2
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Note that this result could also have been obtained by using the relation (3.13) between the distorted and the
underlying matter densities. This expression for the correlation function in configuration space is the first major
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result of this article. Indeed, it is from this expression that we will extract the plane-parallel approximation and its
corrections due to large angle effects.
Finally, for the sake of completeness, we insist that instead of writing θ = −βδ, we could have left the quantities θ

and δ in our calculation, and defined

⟨δ(k)δ⋆(k′)⟩ = Pδδ(k)δD(k−k′) , ⟨δ(k)θ⋆(k′)⟩ = Pδθ(k)δD(k−k′) , ⟨θ(k)θ⋆(k′)⟩ = Pθθ(k)δD(k−k′) . (3.21)

These various spectra would then be related to P(k) by Pδδ(k) = P(k), Pδθ(k) = −βP(k), and Pθθ(k) = β2P(k).
In all the results derived in this article, we can directly associate all terms with no β dependence to Pδδ, the linear
terms in −β with Pδθ(k), and terms containing β2 with Pθθ(k). The notation chosen thus allows for more compact
expressions.

2. Plane-parallel limit

In order to have a better insight on the general expression (3.20), we check in this section that we can obtain from
it the standard result in the plane-parallel limit.
Let us first detail the geometry of the problem. The two-point correlation function is defined as a function of the

two correlated positions r1 and r2, but on its expression (3.20) we realize that it can also be expressed as Cz(r1, r2, r).
Indeed, it is only a function of the shape of the triangle defined by the two sources and the observer, and this is
fully characterized by the length of its three sides. This is because the global rotational invariance of the correlation
function has absorbed three out of the six degrees of freedom. Furthermore, one can equivalently describe such triangle
by two sides and an angle, see Fig. 2. Defining φ as the angle between the two directions (cosφ ≡ ν), the correlation
function can also be expressed in the form Cz(r1, r2,φ) = Cz(r1, r2, r(r1, r2,φ)). The third side length r, and the
length of the bisector of sources directions d (see Fig. 2) are obtained as

r2(r1, r2,φ) ≡ |r2 − r1|2 = (r1 + r2)
2 sin2(φ/2) + (r2 − r1)

2 cos2(φ/2) . (3.22)

In the plane-parallel limit, that is for φ ≪ 1, then sin2(φ/2) ≈ φ2/4, and cos2(φ/2) ≈ 1− φ2/8. Therefore,

r2 ≈ (r2 − r1)
2 +

1

8
(r21 + 6r1r2 + r22)φ

2 . (3.23)

We also assume that the two sources are far away compared to their separation, that is if r ≪ d, then d ≈ r1 ≈ r2.
From Eqs. (3.23) we get immediately dr/dφ ≈ (r21 + 6r1r2 + r22)φ/(8r) ≈ d2φ/r, from which we deduce

L2
ν12 ≈ 1

φ
∂φφ∂φ . (3.24)

Instead of using the set of parameters (r, d,φ) to express the correlation function in the plane-parallel limit, it proves
useful to keep r and d, but to use θ (or µd r ≡ cos θ) defined as the angle between r and the bisector (see Fig. 2). In
the plane-parallel limit, it is related to φ by dφ/r ≈ sin θ and cos θ ≈ |r2 − r1|/r.
We are now ready to examine the correlation function given by Eq. (3.20) in the plane-parallel limit. The term linear

in the differential operator L2
ν is expressed in terms of j′′0 (kr) and j′0(kr)/(kr). Using (A15) this can be simplified as

2

d2

(
1

φ
∂φφ∂φ

)
j0(kr(φ)) = −4

3
k2 [j0(kr)P0(µd r) + j2(kr)P2(µd r)] (3.25)

where the Pℓ are Legendre polynomials whose explicit forms are given in Eqs. (A23). For the term quadratic L2
ν

we obtain contributions from j(4)0 , j(3)0 , j′′0 , and j′0, where j(n)0 (kr) means the n-th derivative of the spherical Bessel
function. Using the relations (A15) and (A16), this contribution can be cast as

1

d4

(
1

φ
∂φφ∂φ

)2

j0(kr(φ)) = k4
[
8

15
j0(kr)P0(µd r)−

16

21
j2(kr)P2(µd r) +

8

35
j4(kr)P4(µd r)

]
. (3.26)

Inserting Eq. (3.25) and Eq. (3.26) into Eq. (3.20), we finally obtain that the plane-parallel limit of the two-point
correlation function in configuration space depends only on the difference of positions between the sources r. More
precisely, there is an axisymmetry around the common line of sight of the sources d̂ (that can be taken as the z-axis),
so it depends on r, the distance between the two sources, and on its orientation with respect to the common line of
sight which is given by µ, but not on an azimuthal angle. Indeed, it takes the general form

ξzpp(d, r) = ξzpp(r) ≡ Cz
pp(r1, r2) =

∑

ℓ=0,2,4

ξ(0)ℓ (r)Pℓ(µd r) , (3.27)
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by two sides and an angle, see Fig. 2. Defining φ as the angle between the two directions (cosφ ≡ ν), the correlation
function can also be expressed in the form Cz(r1, r2,φ) = Cz(r1, r2, r(r1, r2,φ)). The third side length r, and the
length of the bisector of sources directions d (see Fig. 2) are obtained as

r2(r1, r2,φ) ≡ |r2 − r1|2 = (r1 + r2)
2 sin2(φ/2) + (r2 − r1)

2 cos2(φ/2) . (3.22)

In the plane-parallel limit, that is for φ ≪ 1, then sin2(φ/2) ≈ φ2/4, and cos2(φ/2) ≈ 1− φ2/8. Therefore,
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We also assume that the two sources are far away compared to their separation, that is if r ≪ d, then d ≈ r1 ≈ r2.
From Eqs. (3.23) we get immediately dr/dφ ≈ (r21 + 6r1r2 + r22)φ/(8r) ≈ d2φ/r, from which we deduce
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∂φφ∂φ . (3.24)

Instead of using the set of parameters (r, d,φ) to express the correlation function in the plane-parallel limit, it proves
useful to keep r and d, but to use θ (or µd r ≡ cos θ) defined as the angle between r and the bisector (see Fig. 2). In
the plane-parallel limit, it is related to φ by dφ/r ≈ sin θ and cos θ ≈ |r2 − r1|/r.
We are now ready to examine the correlation function given by Eq. (3.20) in the plane-parallel limit. The term linear

in the differential operator L2
ν is expressed in terms of j′′0 (kr) and j′0(kr)/(kr). Using (A15) this can be simplified as
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where the Pℓ are Legendre polynomials whose explicit forms are given in Eqs. (A23). For the term quadratic L2
ν

we obtain contributions from j(4)0 , j(3)0 , j′′0 , and j′0, where j(n)0 (kr) means the n-th derivative of the spherical Bessel
function. Using the relations (A15) and (A16), this contribution can be cast as
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Inserting Eq. (3.25) and Eq. (3.26) into Eq. (3.20), we finally obtain that the plane-parallel limit of the two-point
correlation function in configuration space depends only on the difference of positions between the sources r. More
precisely, there is an axisymmetry around the common line of sight of the sources d̂ (that can be taken as the z-axis),
so it depends on r, the distance between the two sources, and on its orientation with respect to the common line of
sight which is given by µ, but not on an azimuthal angle. Indeed, it takes the general form

ξzpp(d, r) = ξzpp(r) ≡ Cz
pp(r1, r2) =

∑

ℓ=0,2,4

ξ(0)ℓ (r)Pℓ(µd r) , (3.27)
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These various spectra would then be related to P(k) by Pδδ(k) = P(k), Pδθ(k) = −βP(k), and Pθθ(k) = β2P(k).
In all the results derived in this article, we can directly associate all terms with no β dependence to Pδδ, the linear
terms in −β with Pδθ(k), and terms containing β2 with Pθθ(k). The notation chosen thus allows for more compact
expressions.

2. Plane-parallel limit

In order to have a better insight on the general expression (3.20), we check in this section that we can obtain from
it the standard result in the plane-parallel limit.
Let us first detail the geometry of the problem. The two-point correlation function is defined as a function of the

two correlated positions r1 and r2, but on its expression (3.20) we realize that it can also be expressed as Cz(r1, r2, r).
Indeed, it is only a function of the shape of the triangle defined by the two sources and the observer, and this is
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We also assume that the two sources are far away compared to their separation, that is if r ≪ d, then d ≈ r1 ≈ r2.
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Inserting Eq. (3.25) and Eq. (3.26) into Eq. (3.20), we finally obtain that the plane-parallel limit of the two-point
correlation function in configuration space depends only on the difference of positions between the sources r. More
precisely, there is an axisymmetry around the common line of sight of the sources d̂ (that can be taken as the z-axis),
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terms in −β with Pδθ(k), and terms containing β2 with Pθθ(k). The notation chosen thus allows for more compact
expressions.
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In order to have a better insight on the general expression (3.20), we check in this section that we can obtain from
it the standard result in the plane-parallel limit.
Let us first detail the geometry of the problem. The two-point correlation function is defined as a function of the

two correlated positions r1 and r2, but on its expression (3.20) we realize that it can also be expressed as Cz(r1, r2, r).
Indeed, it is only a function of the shape of the triangle defined by the two sources and the observer, and this is
fully characterized by the length of its three sides. This is because the global rotational invariance of the correlation
function has absorbed three out of the six degrees of freedom. Furthermore, one can equivalently describe such triangle
by two sides and an angle, see Fig. 2. Defining φ as the angle between the two directions (cosφ ≡ ν), the correlation
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Instead of using the set of parameters (r, d,φ) to express the correlation function in the plane-parallel limit, it proves
useful to keep r and d, but to use θ (or µd r ≡ cos θ) defined as the angle between r and the bisector (see Fig. 2). In
the plane-parallel limit, it is related to φ by dφ/r ≈ sin θ and cos θ ≈ |r2 − r1|/r.
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Inserting Eq. (3.25) and Eq. (3.26) into Eq. (3.20), we finally obtain that the plane-parallel limit of the two-point
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precisely, there is an axisymmetry around the common line of sight of the sources d̂ (that can be taken as the z-axis),
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In order to have a better insight on the general expression (3.20), we check in this section that we can obtain from
it the standard result in the plane-parallel limit.
Let us first detail the geometry of the problem. The two-point correlation function is defined as a function of the
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In order to have a better insight on the general expression (3.20), we check in this section that we can obtain from
it the standard result in the plane-parallel limit.
Let us first detail the geometry of the problem. The two-point correlation function is defined as a function of the

two correlated positions r1 and r2, but on its expression (3.20) we realize that it can also be expressed as Cz(r1, r2, r).
Indeed, it is only a function of the shape of the triangle defined by the two sources and the observer, and this is
fully characterized by the length of its three sides. This is because the global rotational invariance of the correlation
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useful to keep r and d, but to use θ (or µd r ≡ cos θ) defined as the angle between r and the bisector (see Fig. 2). In
the plane-parallel limit, it is related to φ by dφ/r ≈ sin θ and cos θ ≈ |r2 − r1|/r.
We are now ready to examine the correlation function given by Eq. (3.20) in the plane-parallel limit. The term linear

in the differential operator L2
ν is expressed in terms of j′′0 (kr) and j′0(kr)/(kr). Using (A15) this can be simplified as

2

d2

(
1

φ
∂φφ∂φ

)
j0(kr(φ)) = −4

3
k2 [j0(kr)P0(µd r) + j2(kr)P2(µd r)] (3.25)

where the Pℓ are Legendre polynomials whose explicit forms are given in Eqs. (A23). For the term quadratic L2
ν

we obtain contributions from j(4)0 , j(3)0 , j′′0 , and j′0, where j(n)0 (kr) means the n-th derivative of the spherical Bessel
function. Using the relations (A15) and (A16), this contribution can be cast as

1

d4

(
1

φ
∂φφ∂φ

)2

j0(kr(φ)) = k4
[
8

15
j0(kr)P0(µd r)−

16

21
j2(kr)P2(µd r) +

8

35
j4(kr)P4(µd r)

]
. (3.26)

Inserting Eq. (3.25) and Eq. (3.26) into Eq. (3.20), we finally obtain that the plane-parallel limit of the two-point
correlation function in configuration space depends only on the difference of positions between the sources r. More
precisely, there is an axisymmetry around the common line of sight of the sources d̂ (that can be taken as the z-axis),
so it depends on r, the distance between the two sources, and on its orientation with respect to the common line of
sight which is given by µ, but not on an azimuthal angle. Indeed, it takes the general form

ξzpp(d, r) = ξzpp(r) ≡ Cz
pp(r1, r2) =

∑

ℓ=0,2,4

ξ(0)ℓ (r)Pℓ(µd r) , (3.27)
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result of this article. Indeed, it is from this expression that we will extract the plane-parallel approximation and its
corrections due to large angle effects.
Finally, for the sake of completeness, we insist that instead of writing θ = −βδ, we could have left the quantities θ

and δ in our calculation, and defined

⟨δ(k)δ⋆(k′)⟩ = Pδδ(k)δD(k−k′) , ⟨δ(k)θ⋆(k′)⟩ = Pδθ(k)δD(k−k′) , ⟨θ(k)θ⋆(k′)⟩ = Pθθ(k)δD(k−k′) . (3.21)

These various spectra would then be related to P(k) by Pδδ(k) = P(k), Pδθ(k) = −βP(k), and Pθθ(k) = β2P(k).
In all the results derived in this article, we can directly associate all terms with no β dependence to Pδδ, the linear
terms in −β with Pδθ(k), and terms containing β2 with Pθθ(k). The notation chosen thus allows for more compact
expressions.

2. Plane-parallel limit

In order to have a better insight on the general expression (3.20), we check in this section that we can obtain from
it the standard result in the plane-parallel limit.
Let us first detail the geometry of the problem. The two-point correlation function is defined as a function of the

two correlated positions r1 and r2, but on its expression (3.20) we realize that it can also be expressed as Cz(r1, r2, r).
Indeed, it is only a function of the shape of the triangle defined by the two sources and the observer, and this is
fully characterized by the length of its three sides. This is because the global rotational invariance of the correlation
function has absorbed three out of the six degrees of freedom. Furthermore, one can equivalently describe such triangle
by two sides and an angle, see Fig. 2. Defining φ as the angle between the two directions (cosφ ≡ ν), the correlation
function can also be expressed in the form Cz(r1, r2,φ) = Cz(r1, r2, r(r1, r2,φ)). The third side length r, and the
length of the bisector of sources directions d (see Fig. 2) are obtained as

r2(r1, r2,φ) ≡ |r2 − r1|2 = (r1 + r2)
2 sin2(φ/2) + (r2 − r1)

2 cos2(φ/2) . (3.22)

In the plane-parallel limit, that is for φ ≪ 1, then sin2(φ/2) ≈ φ2/4, and cos2(φ/2) ≈ 1− φ2/8. Therefore,

r2 ≈ (r2 − r1)
2 +

1

8
(r21 + 6r1r2 + r22)φ

2 . (3.23)

We also assume that the two sources are far away compared to their separation, that is if r ≪ d, then d ≈ r1 ≈ r2.
From Eqs. (3.23) we get immediately dr/dφ ≈ (r21 + 6r1r2 + r22)φ/(8r) ≈ d2φ/r, from which we deduce

L2
ν12 ≈ 1

φ
∂φφ∂φ . (3.24)

Instead of using the set of parameters (r, d,φ) to express the correlation function in the plane-parallel limit, it proves
useful to keep r and d, but to use θ (or µd r ≡ cos θ) defined as the angle between r and the bisector (see Fig. 2). In
the plane-parallel limit, it is related to φ by dφ/r ≈ sin θ and cos θ ≈ |r2 − r1|/r.
We are now ready to examine the correlation function given by Eq. (3.20) in the plane-parallel limit. The term linear

in the differential operator L2
ν is expressed in terms of j′′0 (kr) and j′0(kr)/(kr). Using (A15) this can be simplified as

2

d2

(
1

φ
∂φφ∂φ

)
j0(kr(φ)) = −4

3
k2 [j0(kr)P0(µd r) + j2(kr)P2(µd r)] (3.25)

where the Pℓ are Legendre polynomials whose explicit forms are given in Eqs. (A23). For the term quadratic L2
ν

we obtain contributions from j(4)0 , j(3)0 , j′′0 , and j′0, where j(n)0 (kr) means the n-th derivative of the spherical Bessel
function. Using the relations (A15) and (A16), this contribution can be cast as

1

d4
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)2

j0(kr(φ)) = k4
[
8

15
j0(kr)P0(µd r)−
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21
j2(kr)P2(µd r) +
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35
j4(kr)P4(µd r)

]
. (3.26)

Inserting Eq. (3.25) and Eq. (3.26) into Eq. (3.20), we finally obtain that the plane-parallel limit of the two-point
correlation function in configuration space depends only on the difference of positions between the sources r. More
precisely, there is an axisymmetry around the common line of sight of the sources d̂ (that can be taken as the z-axis),
so it depends on r, the distance between the two sources, and on its orientation with respect to the common line of
sight which is given by µ, but not on an azimuthal angle. Indeed, it takes the general form

ξzpp(d, r) = ξzpp(r) ≡ Cz
pp(r1, r2) =

∑

ℓ=0,2,4

ξ(0)ℓ (r)Pℓ(µd r) , (3.27)
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result of this article. Indeed, it is from this expression that we will extract the plane-parallel approximation and its
corrections due to large angle effects.
Finally, for the sake of completeness, we insist that instead of writing θ = −βδ, we could have left the quantities θ

and δ in our calculation, and defined

⟨δ(k)δ⋆(k′)⟩ = Pδδ(k)δD(k−k′) , ⟨δ(k)θ⋆(k′)⟩ = Pδθ(k)δD(k−k′) , ⟨θ(k)θ⋆(k′)⟩ = Pθθ(k)δD(k−k′) . (3.21)

These various spectra would then be related to P(k) by Pδδ(k) = P(k), Pδθ(k) = −βP(k), and Pθθ(k) = β2P(k).
In all the results derived in this article, we can directly associate all terms with no β dependence to Pδδ, the linear
terms in −β with Pδθ(k), and terms containing β2 with Pθθ(k). The notation chosen thus allows for more compact
expressions.

2. Plane-parallel limit

In order to have a better insight on the general expression (3.20), we check in this section that we can obtain from
it the standard result in the plane-parallel limit.
Let us first detail the geometry of the problem. The two-point correlation function is defined as a function of the

two correlated positions r1 and r2, but on its expression (3.20) we realize that it can also be expressed as Cz(r1, r2, r).
Indeed, it is only a function of the shape of the triangle defined by the two sources and the observer, and this is
fully characterized by the length of its three sides. This is because the global rotational invariance of the correlation
function has absorbed three out of the six degrees of freedom. Furthermore, one can equivalently describe such triangle
by two sides and an angle, see Fig. 2. Defining φ as the angle between the two directions (cosφ ≡ ν), the correlation
function can also be expressed in the form Cz(r1, r2,φ) = Cz(r1, r2, r(r1, r2,φ)). The third side length r, and the
length of the bisector of sources directions d (see Fig. 2) are obtained as

r2(r1, r2,φ) ≡ |r2 − r1|2 = (r1 + r2)
2 sin2(φ/2) + (r2 − r1)

2 cos2(φ/2) . (3.22)

In the plane-parallel limit, that is for φ ≪ 1, then sin2(φ/2) ≈ φ2/4, and cos2(φ/2) ≈ 1− φ2/8. Therefore,

r2 ≈ (r2 − r1)
2 +

1

8
(r21 + 6r1r2 + r22)φ

2 . (3.23)

We also assume that the two sources are far away compared to their separation, that is if r ≪ d, then d ≈ r1 ≈ r2.
From Eqs. (3.23) we get immediately dr/dφ ≈ (r21 + 6r1r2 + r22)φ/(8r) ≈ d2φ/r, from which we deduce

L2
ν12 ≈ 1

φ
∂φφ∂φ . (3.24)

Instead of using the set of parameters (r, d,φ) to express the correlation function in the plane-parallel limit, it proves
useful to keep r and d, but to use θ (or µd r ≡ cos θ) defined as the angle between r and the bisector (see Fig. 2). In
the plane-parallel limit, it is related to φ by dφ/r ≈ sin θ and cos θ ≈ |r2 − r1|/r.
We are now ready to examine the correlation function given by Eq. (3.20) in the plane-parallel limit. The term linear

in the differential operator L2
ν is expressed in terms of j′′0 (kr) and j′0(kr)/(kr). Using (A15) this can be simplified as

2

d2

(
1

φ
∂φφ∂φ

)
j0(kr(φ)) = −4

3
k2 [j0(kr)P0(µd r) + j2(kr)P2(µd r)] (3.25)

where the Pℓ are Legendre polynomials whose explicit forms are given in Eqs. (A23). For the term quadratic L2
ν

we obtain contributions from j(4)0 , j(3)0 , j′′0 , and j′0, where j(n)0 (kr) means the n-th derivative of the spherical Bessel
function. Using the relations (A15) and (A16), this contribution can be cast as

1

d4

(
1

φ
∂φφ∂φ

)2

j0(kr(φ)) = k4
[
8

15
j0(kr)P0(µd r)−

16

21
j2(kr)P2(µd r) +

8

35
j4(kr)P4(µd r)

]
. (3.26)

Inserting Eq. (3.25) and Eq. (3.26) into Eq. (3.20), we finally obtain that the plane-parallel limit of the two-point
correlation function in configuration space depends only on the difference of positions between the sources r. More
precisely, there is an axisymmetry around the common line of sight of the sources d̂ (that can be taken as the z-axis),
so it depends on r, the distance between the two sources, and on its orientation with respect to the common line of
sight which is given by µ, but not on an azimuthal angle. Indeed, it takes the general form

ξzpp(d, r) = ξzpp(r) ≡ Cz
pp(r1, r2) =

∑

ℓ=0,2,4

ξ(0)ℓ (r)Pℓ(µd r) , (3.27)

8

r1

r2

r

θ

ϕ__
2

d

FIG. 2 Representation of the geometry of the problem. r1, r2 and r form a triangle. r can also be expressed in terms of r1, r2
and the angle φ. θ is the angle determined by the bisector and r.

where the only non-vanishing coefficients ξ0ℓ (r) of this expansion are directly obtained from Eqs. (3.20), (3.25),
and (3.26) as

ξ(0)0 (r) =

(
1 +

2

3
β +

1

5
β2

)
Ξ0
0(r) , ξ(0)2 (r) = −

(
4

3
β +

4

7
β2

)
Ξ0
2(r) , ξ(0)4 (r) =

8

35
β2Ξ0

4(r) , (3.28)

and with the convenient definition

Ξm
ℓ (r) ≡

∫
k2dk

2π2
(kr)−mjℓ(kr)P(k) . (3.29)

Eq. (3.27) is the Kaiser formula in configuration space (Hamilton, 1992).

C. Redshift-space distortions in Fourier space

1. General expression

In this section, we investigate the Fourier conjugate of the objects given in (3.13) and (3.16). We first note that
for a function of k · r we can relate operators acting on the r dependence to operators acting on the k dependence.
Indeed for scalar functions of k · r,

Or

k2
f(k · r) = Ok

r2
f(k · r) , ∆r

k2
f(k · r) = ∆k

r2
f(k · r) ⇒ L2

r̂f(k · r) = L2
k̂
f(k · r) . (3.30)

Using these results, we find an equivalent expression for Eq. (3.13) which is

δz(r) = (1 + β)δ(r) + β

∫
d3k

(2π)3/2
δ(k)

k2
L2
r̂

r2
(
eik·r

)
= (1 + β)δ(r) + β

∫
d3k

(2π)3/2
δ(k)

(kr)2
L2
k̂

(
eik·r

)
. (3.31)

Once this step has been taken, it is then straightforward to take the Fourier transform to find a relation between the
Fourier components of δz and δ. We obtain

δz(k) = (1 + β)δ(k) + β

∫
d3p

p2
δ(p)L2

p̂

(∫
d3r

(2π)3
ei(p−k)·r

r2

)
. (3.32)

Furthermore, recalling that

∫
d3r

(2π)3
ei(p−k)·r

r2
=

1

4π|k− p| , (3.33)
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FIG. 2 Representation of the geometry of the problem. r1, r2 and r form a triangle. r can also be expressed in terms of r1, r2
and the angle φ. θ is the angle determined by the bisector and r.

where the only non-vanishing coefficients ξ0ℓ (r) of this expansion are directly obtained from Eqs. (3.20), (3.25),
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and with the convenient definition
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ℓ (r) ≡

∫
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2π2
(kr)−mjℓ(kr)P(k) . (3.29)

Eq. (3.27) is the Kaiser formula in configuration space (Hamilton, 1992).

C. Redshift-space distortions in Fourier space

1. General expression

In this section, we investigate the Fourier conjugate of the objects given in (3.13) and (3.16). We first note that
for a function of k · r we can relate operators acting on the r dependence to operators acting on the k dependence.
Indeed for scalar functions of k · r,

Or
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f(k · r) = ∆k

r2
f(k · r) ⇒ L2

r̂f(k · r) = L2
k̂
f(k · r) . (3.30)

Using these results, we find an equivalent expression for Eq. (3.13) which is
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∫
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(
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)
= (1 + β)δ(r) + β
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(
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. (3.31)

Once this step has been taken, it is then straightforward to take the Fourier transform to find a relation between the
Fourier components of δz and δ. We obtain

δz(k) = (1 + β)δ(k) + β

∫
d3p
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(∫
d3r

(2π)3
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)
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Furthermore, recalling that
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(2π)3
ei(p−k)·r

r2
=

1

4π|k− p| , (3.33)
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FIG. 2 Representation of the geometry of the problem. r1, r2 and r form a triangle. r can also be expressed in terms of r1, r2
and the angle φ. θ is the angle determined by the bisector and r.

where the only non-vanishing coefficients ξ0ℓ (r) of this expansion are directly obtained from Eqs. (3.20), (3.25),
and (3.26) as

ξ(0)0 (r) =
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1 +

2

3
β +

1

5
β2

)
Ξ0
0(r) , ξ(0)2 (r) = −

(
4
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β +
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)
Ξ0
2(r) , ξ(0)4 (r) =

8
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4(r) , (3.28)

and with the convenient definition

Ξm
ℓ (r) ≡

∫
k2dk

2π2
(kr)−mjℓ(kr)P(k) . (3.29)

Eq. (3.27) is the Kaiser formula in configuration space (Hamilton, 1992).

C. Redshift-space distortions in Fourier space

1. General expression

In this section, we investigate the Fourier conjugate of the objects given in (3.13) and (3.16). We first note that
for a function of k · r we can relate operators acting on the r dependence to operators acting on the k dependence.
Indeed for scalar functions of k · r,

Or

k2
f(k · r) = Ok

r2
f(k · r) , ∆r

k2
f(k · r) = ∆k

r2
f(k · r) ⇒ L2

r̂f(k · r) = L2
k̂
f(k · r) . (3.30)

Using these results, we find an equivalent expression for Eq. (3.13) which is
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Once this step has been taken, it is then straightforward to take the Fourier transform to find a relation between the
Fourier components of δz and δ. We obtain
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)
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Furthermore, recalling that
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ei(p−k)·r
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=

1

4π|k− p| , (3.33)
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and the angle φ. θ is the angle determined by the bisector and r.

where the only non-vanishing coefficients ξ0ℓ (r) of this expansion are directly obtained from Eqs. (3.20), (3.25),
and (3.26) as
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)
Ξ0
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and with the convenient definition

Ξm
ℓ (r) ≡

∫
k2dk

2π2
(kr)−mjℓ(kr)P(k) . (3.29)

Eq. (3.27) is the Kaiser formula in configuration space (Hamilton, 1992).

C. Redshift-space distortions in Fourier space

1. General expression

In this section, we investigate the Fourier conjugate of the objects given in (3.13) and (3.16). We first note that
for a function of k · r we can relate operators acting on the r dependence to operators acting on the k dependence.
Indeed for scalar functions of k · r,

Or
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f(k · r) = Ok
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f(k · r) , ∆r
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Using these results, we find an equivalent expression for Eq. (3.13) which is
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Once this step has been taken, it is then straightforward to take the Fourier transform to find a relation between the
Fourier components of δz and δ. We obtain

δz(k) = (1 + β)δ(k) + β
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d3p

p2
δ(p)L2

p̂
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d3r

(2π)3
ei(p−k)·r

r2

)
. (3.32)

Furthermore, recalling that
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d3r

(2π)3
ei(p−k)·r
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=

1

4π|k− p| , (3.33)
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where the only non-vanishing coefficients ξ0ℓ (r) of this expansion are directly obtained from Eqs. (3.20), (3.25),
and (3.26) as
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Ξ0
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and with the convenient definition

Ξm
ℓ (r) ≡

∫
k2dk

2π2
(kr)−mjℓ(kr)P(k) . (3.29)

Eq. (3.27) is the Kaiser formula in configuration space (Hamilton, 1992).

C. Redshift-space distortions in Fourier space

1. General expression

In this section, we investigate the Fourier conjugate of the objects given in (3.13) and (3.16). We first note that
for a function of k · r we can relate operators acting on the r dependence to operators acting on the k dependence.
Indeed for scalar functions of k · r,

Or
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r2
f(k · r) , ∆r
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Using these results, we find an equivalent expression for Eq. (3.13) which is
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Once this step has been taken, it is then straightforward to take the Fourier transform to find a relation between the
Fourier components of δz and δ. We obtain
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Furthermore, recalling that
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4π|k− p| , (3.33)
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and the angle φ. θ is the angle determined by the bisector and r.

where the only non-vanishing coefficients ξ0ℓ (r) of this expansion are directly obtained from Eqs. (3.20), (3.25),
and (3.26) as

ξ(0)0 (r) =

(
1 +

2

3
β +

1

5
β2

)
Ξ0
0(r) , ξ(0)2 (r) = −

(
4

3
β +

4

7
β2

)
Ξ0
2(r) , ξ(0)4 (r) =

8

35
β2Ξ0

4(r) , (3.28)

and with the convenient definition

Ξm
ℓ (r) ≡

∫
k2dk

2π2
(kr)−mjℓ(kr)P(k) . (3.29)

Eq. (3.27) is the Kaiser formula in configuration space (Hamilton, 1992).

C. Redshift-space distortions in Fourier space

1. General expression

In this section, we investigate the Fourier conjugate of the objects given in (3.13) and (3.16). We first note that
for a function of k · r we can relate operators acting on the r dependence to operators acting on the k dependence.
Indeed for scalar functions of k · r,

Or

k2
f(k · r) = Ok

r2
f(k · r) , ∆r

k2
f(k · r) = ∆k

r2
f(k · r) ⇒ L2

r̂f(k · r) = L2
k̂
f(k · r) . (3.30)

Using these results, we find an equivalent expression for Eq. (3.13) which is

δz(r) = (1 + β)δ(r) + β

∫
d3k

(2π)3/2
δ(k)

k2
L2
r̂

r2
(
eik·r

)
= (1 + β)δ(r) + β

∫
d3k

(2π)3/2
δ(k)

(kr)2
L2
k̂

(
eik·r

)
. (3.31)

Once this step has been taken, it is then straightforward to take the Fourier transform to find a relation between the
Fourier components of δz and δ. We obtain

δz(k) = (1 + β)δ(k) + β

∫
d3p

p2
δ(p)L2

p̂

(∫
d3r

(2π)3
ei(p−k)·r

r2

)
. (3.32)

Furthermore, recalling that

∫
d3r

(2π)3
ei(p−k)·r

r2
=

1

4π|k− p| , (3.33)
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we can rewrite this result in a more compact form with an integral on a kernel as

δz(k) = (1 + β)δ(k) + β

∫
d3p

k2
δ(p)K(k,p) , K(k,p) ≡ L2

νkp

(
1

4π|k− p|

)
, νkp ≡ k̂ · p̂ . (3.34)

Correlating a pair of fields using this expression, and using the statistical properties (3.14) of the δ(k), we get

Cz(k1,k2) = (1 + β)2P(k1)δ
3
D(k1 − k2) + β(1 + β)

[
P(k1)

k21
K(k1,k2) +

P(k2)

k22
K(k2,k1)

]

+β2

∫
d3p

P(p)

p4
K(k1,p)K(p,k2) . (3.35)

The kernel K deserves a closer analysis. An explicit form can be obtained using the expansion

1

|k− k′| =
∑

ℓ

kℓ<
kℓ+1
>

Pℓ(k̂ · k̂′) , (3.36)

where k< ≡ min{k, k′} and k> ≡ max{k, k′}. We then find

K(k,k′) = L2
νkk′

(
1

4π|k− k′|

)
=

1

4π

∑

ℓ

kℓ<
kℓ+1
>

L2
νkk′

Pℓ(k̂ · k̂′) = − 1

4π

∑

ℓ

ℓ(ℓ+ 1)
kℓ<
kℓ+1
>

Pℓ(k̂ · k̂′) (3.37)

because of the property (A21). The coefficients of the expansion of the kernel K in spherical harmonics are then easily
found to be

Kℓ(k, k
′) ≡ − ℓ(ℓ+ 1)

2ℓ+ 1

kℓ<
kℓ+1
>

, ⇒ K(k,k′) =
∑

ℓm

Kℓ(k, k
′)Yℓm(k̂)Y⋆

ℓm(k̂′) . (3.38)

The most important identities satisfied by Kℓ are presented in Appendix B. This same kernel was already introduced
by (Taylor and Valentine, 1999).
The two point correlation of the density fields in Fourier space is also the Fourier transform of the two point

correlation function in configuration space. This means that Eq. (3.35) should be related to Eq. (3.20) by a Fourier
transformation as

Cz(r1, r2) =
1

(2π)3

∫
d3k1d

3k2C
z(k1,k2)e

ik1·r1−ik2·r2 . (3.39)

In order to check this explicitly, we must proceed as follows. First, from (3.35) we use (3.37) to decompose the
angular dependence in spherical harmonics. After taking the inverse Fourier transform, we need to also decompose
the exponentials in spherical waves using the expansion (A8). The angular integrals can be performed easily using the
orthonormality of spherical harmonics. The final angular dependence can be simplified using the addition theorem for
Legendre polynomials (A24). As for the remaining radial integral, it can be simplified using the relation (B8). The
result is finally recast in the form (3.20) if we use the addition property (A12) is employed to contract the spherical
Bessel functions into j0(kr).

2. Alternative expression of the correlation function

It is convenient to define another kernel to recast Eq. (3.35) in a simpler form. Given that − 1
4π|r−r′| is the Green’s

function for the Laplace equation in three dimensions, i.e.,

∆

(
−1

4π|r− r′|

)
= δD(r− r′) , (3.40)

and the decomposition (3.12) of the Laplacian, we define a kernel with the radial operator in Fourier space as

N (k1,k2) ≡ −k21Ok1

(
1

4π|k1 − k2|

)
= K(k1,k2) + k21δD(k1 − k2) . (3.41)

With this kernel, the correlation in Fourier space reads simply

Cz(k1,k2) = P (k1)δ
3
D(k1−k2)+β

[
P (k1)

k21
N (k1,k2) +

P (k2)

k22
N (k2,k1)

]
+β2

∫
d3p

P (p)

p4
N (k1,p)N (p,k2) . (3.42)

This could have been obtained directly if we had started with Eq. (3.11) and not from Eq. (3.13) as chosen in the
previous section.
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we can rewrite this result in a more compact form with an integral on a kernel as

δz(k) = (1 + β)δ(k) + β

∫
d3p

k2
δ(p)K(k,p) , K(k,p) ≡ L2

νkp

(
1

4π|k− p|

)
, νkp ≡ k̂ · p̂ . (3.34)

Correlating a pair of fields using this expression, and using the statistical properties (3.14) of the δ(k), we get

Cz(k1,k2) = (1 + β)2P(k1)δ
3
D(k1 − k2) + β(1 + β)

[
P(k1)

k21
K(k1,k2) +

P(k2)

k22
K(k2,k1)

]

+β2

∫
d3p

P(p)

p4
K(k1,p)K(p,k2) . (3.35)

The kernel K deserves a closer analysis. An explicit form can be obtained using the expansion

1

|k− k′| =
∑

ℓ

kℓ<
kℓ+1
>

Pℓ(k̂ · k̂′) , (3.36)

where k< ≡ min{k, k′} and k> ≡ max{k, k′}. We then find

K(k,k′) = L2
νkk′

(
1

4π|k− k′|

)
=

1

4π

∑

ℓ

kℓ<
kℓ+1
>

L2
νkk′

Pℓ(k̂ · k̂′) = − 1

4π

∑

ℓ

ℓ(ℓ+ 1)
kℓ<
kℓ+1
>

Pℓ(k̂ · k̂′) (3.37)

because of the property (A21). The coefficients of the expansion of the kernel K in spherical harmonics are then easily
found to be

Kℓ(k, k
′) ≡ − ℓ(ℓ+ 1)

2ℓ+ 1

kℓ<
kℓ+1
>

, ⇒ K(k,k′) =
∑

ℓm

Kℓ(k, k
′)Yℓm(k̂)Y⋆

ℓm(k̂′) . (3.38)

The most important identities satisfied by Kℓ are presented in Appendix B. This same kernel was already introduced
by (Taylor and Valentine, 1999).
The two point correlation of the density fields in Fourier space is also the Fourier transform of the two point

correlation function in configuration space. This means that Eq. (3.35) should be related to Eq. (3.20) by a Fourier
transformation as

Cz(r1, r2) =
1

(2π)3

∫
d3k1d

3k2C
z(k1,k2)e

ik1·r1−ik2·r2 . (3.39)

In order to check this explicitly, we must proceed as follows. First, from (3.35) we use (3.37) to decompose the
angular dependence in spherical harmonics. After taking the inverse Fourier transform, we need to also decompose
the exponentials in spherical waves using the expansion (A8). The angular integrals can be performed easily using the
orthonormality of spherical harmonics. The final angular dependence can be simplified using the addition theorem for
Legendre polynomials (A24). As for the remaining radial integral, it can be simplified using the relation (B8). The
result is finally recast in the form (3.20) if we use the addition property (A12) is employed to contract the spherical
Bessel functions into j0(kr).

2. Alternative expression of the correlation function

It is convenient to define another kernel to recast Eq. (3.35) in a simpler form. Given that − 1
4π|r−r′| is the Green’s

function for the Laplace equation in three dimensions, i.e.,

∆

(
−1

4π|r− r′|

)
= δD(r− r′) , (3.40)

and the decomposition (3.12) of the Laplacian, we define a kernel with the radial operator in Fourier space as

N (k1,k2) ≡ −k21Ok1

(
1

4π|k1 − k2|

)
= K(k1,k2) + k21δD(k1 − k2) . (3.41)

With this kernel, the correlation in Fourier space reads simply

Cz(k1,k2) = P (k1)δ
3
D(k1−k2)+β

[
P (k1)

k21
N (k1,k2) +

P (k2)

k22
N (k2,k1)

]
+β2

∫
d3p

P (p)

p4
N (k1,p)N (p,k2) . (3.42)

This could have been obtained directly if we had started with Eq. (3.11) and not from Eq. (3.13) as chosen in the
previous section.
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we can rewrite this result in a more compact form with an integral on a kernel as

δz(k) = (1 + β)δ(k) + β

∫
d3p

k2
δ(p)K(k,p) , K(k,p) ≡ L2

νkp

(
1

4π|k− p|

)
, νkp ≡ k̂ · p̂ . (3.34)

Correlating a pair of fields using this expression, and using the statistical properties (3.14) of the δ(k), we get

Cz(k1,k2) = (1 + β)2P(k1)δ
3
D(k1 − k2) + β(1 + β)

[
P(k1)

k21
K(k1,k2) +

P(k2)

k22
K(k2,k1)

]

+β2

∫
d3p

P(p)

p4
K(k1,p)K(p,k2) . (3.35)

The kernel K deserves a closer analysis. An explicit form can be obtained using the expansion

1

|k− k′| =
∑

ℓ

kℓ<
kℓ+1
>

Pℓ(k̂ · k̂′) , (3.36)

where k< ≡ min{k, k′} and k> ≡ max{k, k′}. We then find

K(k,k′) = L2
νkk′

(
1

4π|k− k′|

)
=

1

4π

∑

ℓ

kℓ<
kℓ+1
>

L2
νkk′

Pℓ(k̂ · k̂′) = − 1

4π

∑

ℓ

ℓ(ℓ+ 1)
kℓ<
kℓ+1
>

Pℓ(k̂ · k̂′) (3.37)

because of the property (A21). The coefficients of the expansion of the kernel K in spherical harmonics are then easily
found to be

Kℓ(k, k
′) ≡ − ℓ(ℓ+ 1)

2ℓ+ 1

kℓ<
kℓ+1
>

, ⇒ K(k,k′) =
∑

ℓm

Kℓ(k, k
′)Yℓm(k̂)Y⋆

ℓm(k̂′) . (3.38)

The most important identities satisfied by Kℓ are presented in Appendix B. This same kernel was already introduced
by (Taylor and Valentine, 1999).
The two point correlation of the density fields in Fourier space is also the Fourier transform of the two point

correlation function in configuration space. This means that Eq. (3.35) should be related to Eq. (3.20) by a Fourier
transformation as

Cz(r1, r2) =
1

(2π)3

∫
d3k1d

3k2C
z(k1,k2)e

ik1·r1−ik2·r2 . (3.39)

In order to check this explicitly, we must proceed as follows. First, from (3.35) we use (3.37) to decompose the
angular dependence in spherical harmonics. After taking the inverse Fourier transform, we need to also decompose
the exponentials in spherical waves using the expansion (A8). The angular integrals can be performed easily using the
orthonormality of spherical harmonics. The final angular dependence can be simplified using the addition theorem for
Legendre polynomials (A24). As for the remaining radial integral, it can be simplified using the relation (B8). The
result is finally recast in the form (3.20) if we use the addition property (A12) is employed to contract the spherical
Bessel functions into j0(kr).

2. Alternative expression of the correlation function

It is convenient to define another kernel to recast Eq. (3.35) in a simpler form. Given that − 1
4π|r−r′| is the Green’s

function for the Laplace equation in three dimensions, i.e.,

∆

(
−1

4π|r− r′|

)
= δD(r− r′) , (3.40)

and the decomposition (3.12) of the Laplacian, we define a kernel with the radial operator in Fourier space as

N (k1,k2) ≡ −k21Ok1

(
1

4π|k1 − k2|

)
= K(k1,k2) + k21δD(k1 − k2) . (3.41)

With this kernel, the correlation in Fourier space reads simply

Cz(k1,k2) = P (k1)δ
3
D(k1−k2)+β

[
P (k1)

k21
N (k1,k2) +

P (k2)

k22
N (k2,k1)

]
+β2

∫
d3p

P (p)

p4
N (k1,p)N (p,k2) . (3.42)

This could have been obtained directly if we had started with Eq. (3.11) and not from Eq. (3.13) as chosen in the
previous section.
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we can rewrite this result in a more compact form with an integral on a kernel as

δz(k) = (1 + β)δ(k) + β

∫
d3p

k2
δ(p)K(k,p) , K(k,p) ≡ L2

νkp

(
1

4π|k− p|

)
, νkp ≡ k̂ · p̂ . (3.34)

Correlating a pair of fields using this expression, and using the statistical properties (3.14) of the δ(k), we get

Cz(k1,k2) = (1 + β)2P(k1)δ
3
D(k1 − k2) + β(1 + β)

[
P(k1)

k21
K(k1,k2) +

P(k2)

k22
K(k2,k1)

]

+β2

∫
d3p

P(p)

p4
K(k1,p)K(p,k2) . (3.35)

The kernel K deserves a closer analysis. An explicit form can be obtained using the expansion

1

|k− k′| =
∑

ℓ

kℓ<
kℓ+1
>

Pℓ(k̂ · k̂′) , (3.36)

where k< ≡ min{k, k′} and k> ≡ max{k, k′}. We then find

K(k,k′) = L2
νkk′

(
1

4π|k− k′|

)
=

1

4π

∑

ℓ

kℓ<
kℓ+1
>

L2
νkk′

Pℓ(k̂ · k̂′) = − 1

4π

∑

ℓ

ℓ(ℓ+ 1)
kℓ<
kℓ+1
>

Pℓ(k̂ · k̂′) (3.37)

because of the property (A21). The coefficients of the expansion of the kernel K in spherical harmonics are then easily
found to be

Kℓ(k, k
′) ≡ − ℓ(ℓ+ 1)

2ℓ+ 1

kℓ<
kℓ+1
>

, ⇒ K(k,k′) =
∑

ℓm

Kℓ(k, k
′)Yℓm(k̂)Y⋆

ℓm(k̂′) . (3.38)

The most important identities satisfied by Kℓ are presented in Appendix B. This same kernel was already introduced
by (Taylor and Valentine, 1999).
The two point correlation of the density fields in Fourier space is also the Fourier transform of the two point

correlation function in configuration space. This means that Eq. (3.35) should be related to Eq. (3.20) by a Fourier
transformation as

Cz(r1, r2) =
1

(2π)3

∫
d3k1d

3k2C
z(k1,k2)e

ik1·r1−ik2·r2 . (3.39)

In order to check this explicitly, we must proceed as follows. First, from (3.35) we use (3.37) to decompose the
angular dependence in spherical harmonics. After taking the inverse Fourier transform, we need to also decompose
the exponentials in spherical waves using the expansion (A8). The angular integrals can be performed easily using the
orthonormality of spherical harmonics. The final angular dependence can be simplified using the addition theorem for
Legendre polynomials (A24). As for the remaining radial integral, it can be simplified using the relation (B8). The
result is finally recast in the form (3.20) if we use the addition property (A12) is employed to contract the spherical
Bessel functions into j0(kr).

2. Alternative expression of the correlation function

It is convenient to define another kernel to recast Eq. (3.35) in a simpler form. Given that − 1
4π|r−r′| is the Green’s

function for the Laplace equation in three dimensions, i.e.,

∆

(
−1

4π|r− r′|

)
= δD(r− r′) , (3.40)

and the decomposition (3.12) of the Laplacian, we define a kernel with the radial operator in Fourier space as

N (k1,k2) ≡ −k21Ok1

(
1

4π|k1 − k2|

)
= K(k1,k2) + k21δD(k1 − k2) . (3.41)

With this kernel, the correlation in Fourier space reads simply

Cz(k1,k2) = P (k1)δ
3
D(k1−k2)+β

[
P (k1)

k21
N (k1,k2) +

P (k2)

k22
N (k2,k1)

]
+β2

∫
d3p

P (p)

p4
N (k1,p)N (p,k2) . (3.42)

This could have been obtained directly if we had started with Eq. (3.11) and not from Eq. (3.13) as chosen in the
previous section.

Fourier space: kernel K
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we can rewrite this result in a more compact form with an integral on a kernel as

δz(k) = (1 + β)δ(k) + β

∫
d3p

k2
δ(p)K(k,p) , K(k,p) ≡ L2

νkp

(
1

4π|k− p|

)
, νkp ≡ k̂ · p̂ . (3.34)

Correlating a pair of fields using this expression, and using the statistical properties (3.14) of the δ(k), we get

Cz(k1,k2) = (1 + β)2P(k1)δ
3
D(k1 − k2) + β(1 + β)

[
P(k1)

k21
K(k1,k2) +

P(k2)

k22
K(k2,k1)

]

+β2

∫
d3p

P(p)

p4
K(k1,p)K(p,k2) . (3.35)

The kernel K deserves a closer analysis. An explicit form can be obtained using the expansion

1

|k− k′| =
∑

ℓ

kℓ<
kℓ+1
>

Pℓ(k̂ · k̂′) , (3.36)

where k< ≡ min{k, k′} and k> ≡ max{k, k′}. We then find

K(k,k′) = L2
νkk′

(
1

4π|k− k′|

)
=

1

4π

∑

ℓ

kℓ<
kℓ+1
>

L2
νkk′

Pℓ(k̂ · k̂′) = − 1

4π

∑

ℓ

ℓ(ℓ+ 1)
kℓ<
kℓ+1
>

Pℓ(k̂ · k̂′) (3.37)

because of the property (A21). The coefficients of the expansion of the kernel K in spherical harmonics are then easily
found to be

Kℓ(k, k
′) ≡ − ℓ(ℓ+ 1)

2ℓ+ 1

kℓ<
kℓ+1
>

, ⇒ K(k,k′) =
∑

ℓm

Kℓ(k, k
′)Yℓm(k̂)Y⋆

ℓm(k̂′) . (3.38)

The most important identities satisfied by Kℓ are presented in Appendix B. This same kernel was already introduced
by (Taylor and Valentine, 1999).
The two point correlation of the density fields in Fourier space is also the Fourier transform of the two point

correlation function in configuration space. This means that Eq. (3.35) should be related to Eq. (3.20) by a Fourier
transformation as

Cz(r1, r2) =
1

(2π)3

∫
d3k1d

3k2C
z(k1,k2)e

ik1·r1−ik2·r2 . (3.39)

In order to check this explicitly, we must proceed as follows. First, from (3.35) we use (3.37) to decompose the
angular dependence in spherical harmonics. After taking the inverse Fourier transform, we need to also decompose
the exponentials in spherical waves using the expansion (A8). The angular integrals can be performed easily using the
orthonormality of spherical harmonics. The final angular dependence can be simplified using the addition theorem for
Legendre polynomials (A24). As for the remaining radial integral, it can be simplified using the relation (B8). The
result is finally recast in the form (3.20) if we use the addition property (A12) is employed to contract the spherical
Bessel functions into j0(kr).

2. Alternative expression of the correlation function

It is convenient to define another kernel to recast Eq. (3.35) in a simpler form. Given that − 1
4π|r−r′| is the Green’s

function for the Laplace equation in three dimensions, i.e.,

∆

(
−1

4π|r− r′|

)
= δD(r− r′) , (3.40)

and the decomposition (3.12) of the Laplacian, we define a kernel with the radial operator in Fourier space as

N (k1,k2) ≡ −k21Ok1

(
1

4π|k1 − k2|

)
= K(k1,k2) + k21δD(k1 − k2) . (3.41)

With this kernel, the correlation in Fourier space reads simply

Cz(k1,k2) = P (k1)δ
3
D(k1−k2)+β

[
P (k1)

k21
N (k1,k2) +

P (k2)

k22
N (k2,k1)

]
+β2

∫
d3p

P (p)

p4
N (k1,p)N (p,k2) . (3.42)

This could have been obtained directly if we had started with Eq. (3.11) and not from Eq. (3.13) as chosen in the
previous section.
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In order to check this explicitly, we must proceed as follows. First, from (3.35) we use (3.37) to decompose the
angular dependence in spherical harmonics. After taking the inverse Fourier transform, we need to also decompose
the exponentials in spherical waves using the expansion (A8). The angular integrals can be performed easily using the
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Legendre polynomials (A24). As for the remaining radial integral, it can be simplified using the relation (B8). The
result is finally recast in the form (3.20) if we use the addition property (A12) is employed to contract the spherical
Bessel functions into j0(kr).

2. Alternative expression of the correlation function

It is convenient to define another kernel to recast Eq. (3.35) in a simpler form. Given that − 1
4π|r−r′| is the Green’s

function for the Laplace equation in three dimensions, i.e.,

∆

(
−1

4π|r− r′|

)
= δD(r− r′) , (3.40)

and the decomposition (3.12) of the Laplacian, we define a kernel with the radial operator in Fourier space as

N (k1,k2) ≡ −k21Ok1

(
1

4π|k1 − k2|

)
= K(k1,k2) + k21δD(k1 − k2) . (3.41)

With this kernel, the correlation in Fourier space reads simply

Cz(k1,k2) = P (k1)δ
3
D(k1−k2)+β

[
P (k1)

k21
N (k1,k2) +

P (k2)

k22
N (k2,k1)

]
+β2

∫
d3p

P (p)

p4
N (k1,p)N (p,k2) . (3.42)

This could have been obtained directly if we had started with Eq. (3.11) and not from Eq. (3.13) as chosen in the
previous section.

Always mode coupling: Zaroubi & Hoffman (1993)
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conjugate to the difference of positions r is the median Fourier modes k, and the Fourier conjugate to the median
distance d is the difference of the Fourier modes ∆k. This geometry of the Fourier space is illustrated in Fig. 1. This
basic geometrical relation can be understood in two steps. First, for α > 0, the Fourier transform of Cz(αr1, r2) is
1
αC

z(k1

α ,k2), i.e., dilatations (resp. contractions) in configuration space lead to contractions (resp. dilatations) in
Fourier space, and therefore if r1 is shorter than r2, k1 will be longer than k2. Secondly, when performing a Fourier
transformation on a two point correlation function, we introduce the product

eik1·r1e−ik2·r2 = eid·∆ke−ir·k , with k ≡ (k1 + k2)/2 , ∆k ≡ k1 − k2 , (2.3)

from where the crossed conjugate relation among median and difference of modes can be inferred. It is thus natural
to define the correlation function in Fourier space using these variables as

ζz(∆k,k) ≡ Cz(k1,k2) ≡ ⟨δz(k1)δ
z⋆(k2)⟩ . (2.4)

The homogeneity in Fourier space is expressed by the fact that the correlation function depends only on the average
Fourier mode, and not on the difference. The inhomogeneity introduced by the RSD effects translates into the fact
that in Fourier space there are off-diagonal correlations. In this article, we derive the general expression for the
correlation function in Fourier space and exhibit the off-diagonal contributions. Following the correspondence (2.3),
the corrections introduced should be expressed as an expansion in |∆k|/k in the form

ζz(∆k,k) = δD(∆k)ζ(0)0 (k) +
1

4π|∆k|3
∞∑

n=0

(
|∆k|
k

)n ∞∑

ℓ=0
(ℓ,n)≠(0,0)

ζ(n)ℓ (k)Pℓ(µk∆) , with µk∆ ≡ k̂ · ∆̂k . (2.5)

The ζ(0)ℓ (k) correspond to the homogeneous contribution of the plane-parallel limit, for which only ζ(0)0 , ζ(0)2 , ζ(0)4 are

non vanishing. The ζ(n>0)
ℓ are the wide angle corrections which break homogeneity. For each order, the geometrical

dependence is only a function of the angle between the average Fourier modes and the difference of the Fourier modes,
and this is understood from the correspondence (2.3). We do not perform such expansion explicitly except for the
lowest order corresponding to the plane-parallel limit.

C. Wide-angle effects in mixed configuration/Fourier space

In fact the RSD effects can also be apprehended using a mixed space, where the median distance is looked at in
configuration space, but the dependence in the separation of the sources is considered in Fourier space. This can be
obtained either by Fourier transforming the r dependence, that is considering ξ̂z(d,k) instead of in ξz(d, r), or by

inverse Fourier transforming the ∆k dependence, that is by considering ζ̃z(d,k) instead of ζz(∆k,k). We check that
both approaches lead to the same result as they ought to. In this mixed space the natural expansion is

ξ̂z(d,k) = ζ̃z(d,k) =
∞∑

n=0

(
1

kd

)n ∞∑
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P(n)
ℓ (k)Pℓ(µk d) , µkd ≡ k̂ · d̂ . (2.6)
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3. Plane-parallel limit in Fourier space

As emphasized in Sec. II.B, the Fourier mode associated with the difference of positions is the median Fourier mode,
and the Fourier mode associated with the median position is the difference of the Fourier modes, as can be seen on
Eq. (2.3). This is paramount to understand the structure of the Fourier space. It is thus natural to use the variables

k ≡ (k1 + k2)

2
, ∆k ≡ k1 − k2 , (3.43)

to parametrize the correlation functions in Fourier space. Defining µk∆ ≡ k̂ · ∆̂k and ν12 ≡ k̂1 · k̂2, they are related
through

k21 = k2 + (∆k/2)2 + k (∆k)µk∆ (3.44a)

k22 = k2 + (∆k/2)2 − k (∆k)µk∆ (3.44b)

k1k2 ν12 = k2 − (∆k/2)2 (3.44c)

k21k
2
2(1 − ν212) = k2(∆k)2(1 − µ2

k∆) . (3.44d)

Since the plane-parallel limit in configuration space is the limit where r ≪ d, then in Fourier space it corresponds
to |∆k| ≫ k. Following this logic, we need to find the behaviour of Eq. (3.42) under this limit. We find in this section
that it is of the form

ζzpp(∆k,k) ≡ Cz
pp(k1,k2) = δD(∆k)ζ(0)ℓ (k) +

1

4π|∆k|3
∑

ℓ=2,4

ζ(0)ℓ (k)Pℓ(µk∆) . (3.45)

The kernel N (k,k′) appearing in Eq. (3.42) can be computed explicitly. However this requires to deal with the
singular point k = k′. We thus need to use the relation [see Eq. (3.46) of Blanchet et al. (2004)]

Ok
1

4π|k− k′| = OPV
k

1

4π|k− k′| −
1

3
δ(k− k′) , (3.46)

where the superscript PV refers to the principal value. Using the geometrical relations (3.44) yields

4πN (k1,k2) = − 2|k|2

|∆k|3P2(µk∆) +
1

2|∆k| + 4π
|k|2

3
δD(∆k) . (3.47)

The first two terms are the regular part, and the last term is the distributional component of the kernel. This latter
term contributes necessarily to the lowest order, that is to the plane-parallel limit, since it is necessarily diagonal in
Fourier space. By dimensional analysis, the plane-parallel limit of the first two terms is necessarily proportional to
1/|∆k|3, and this is another way to realize that the expansion must take the form (3.45). The plane-parallel limit of
the kernel N k(∆k) is then found to be

4πN (k1,k2) = − 2k2

|∆k|3P2(µk∆) +
4πk2

3
δD(∆k) . (3.48)

Using this limit, the plane-parallel limit of the Fourier space correlation (3.42) is

ζzpp(∆k,k) = P(k)δD(∆k) + 2β
P(k)

k2
N k(∆k) + (2π)3/2β2P(k)

k4

∫
d3∆p

(2π)3/2
N k(∆p)N k(∆k−∆p) . (3.49)

It is not expressed in the desired form (3.45) yet, due to the last integral. However if we notice that this is a convolution
(defined with the (2π)3/2 factor) of a function with itself, then we can directly say that its Fourier transform is the
product of the individual Fourier transforms. The inverse Fourier transform of the plane-parallel kernel is just

Ñ k(d) ≡
∫

d3∆p

(2π)3/2
N̄k(∆p)ei∆p·d =

1

(2π)3/2

(
2

3
k2P2(µk d) +

1

3
k2
)

=
k2 µ2

kd

(2π)3/2
, (3.50)

where we used the Rayleigh formula to expand the exponential, and Weber integrals (see Appendix A.4) for the
radial integration on spherical Bessel functions. Finally, the coefficients of the plane-parallel limit of the Fourier space
correlation function, as defined in Eq. (3.45), are
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ζ(0)0 (k) =

(
1 +

2

3
β +

1

5
β2

)
P(k) , ζ(0)2 (k) =

(
−4β − 12

7
β2

)
P(k) , ζ(0)4 (k) =

12

7
β2P(k) . (3.51)

This result is not the Kaiser formula in Fourier space as originally derived in Kaiser (1987). In fact in the plane-parallel
limit of the correlation function in Fourier space given by Eq. (3.45) whose coefficients are given in Eq. (3.51), there are
still mode couplings. However, the Kaiser equation holds for independent Fourier modes, and is diagonal. It is thus
clear that a further approximation needs to be performed to obtain an equation involving uncoupled modes. In fact,
in order to find the plane-parallel result (3.51), one had to consider the configuration space part of the plane-parallel
kernel in Eq. (3.50), using the median distance d rather than the difference of Fourier modes ∆k. This means that
in order to find the plane-parallel expansion in Fourier space, we had to go through a mixed configuration/Fourier
space temporarily. We shall find that the Kaiser formula arises naturally in this mixed space. And as mentioned in
Sec. II.C, once the coefficients of the double expansion in this mixed space are known, the coefficients of the double
expansion ζnℓ in the Fourier space can be deduced extremely easily, since they are related by simple numerical factors.
The next section is devoted to the computation of the plane-parallel approximation in this mixed spaced, allowing
then to explain how the Kaiser formula arises in the subsequent section.

4. Plane-parallel limit in mixed configuration/Fourier space
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Fourier space correlation (3.49). With the help of the Fourier transformed plane-parallel Kernel (3.50), we get
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The angular dependence of this expression can be decomposed onto Legendre polynomials in the form

ζ̃zpp(d,k) =
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ℓ=0,2,4
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Alternatively, one could also obtain the plane-parallel limit in the mixed space by taking the Fourier transform of
the configuration space correlation function (3.27) in that same limit, that is with

ξ̂zpp(d,k) ≡
∫

d3r

(2π)3/2
ξzpp(d, r)e

−ik·r . (3.56)

Expanding the exponential in Legendre polynomials with the Rayleigh expansion (A8), and then performing the
integral on the polar angle using the orthogonality relations of Legendre polynomials (A26), we get

ξ̂zpp(d,k) =
∑

ℓ=0,2,4

[√
2

π
(−i)ℓ

∫
drr2jℓ(kr)ξ

(0)
ℓ (r)

]
Pℓ(µk d) . (3.57)

The object inside squared brackets in this expression is the Hankel transform of the ξ0ℓ (r). Inserting Eqs. (3.28) in
(3.57), and using the orthogonality of spherical Bessel functions (A13), we can check that

ξ̂zpp(d,k) = ζ̃zpp(d,k) , (3.58)

meaning that we can obtain correlation functions in this mixed configuration/Fourier space in two different, but

equivalent ways. Either we Fourier transform ξz(d, r) on the second variable obtaining ξ̂z(d,k), or we take and

inverse Fourier transform on ζz(∆k,k) on the first variable obtaining ζ̃z(d,k). These two objects are intermediate
steps between full configuration or full Fourier space quantities, and we have explicitly verified here their equivalence
in the plane-parallel limit.
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This result is not the Kaiser formula in Fourier space as originally derived in Kaiser (1987). In fact in the plane-parallel
limit of the correlation function in Fourier space given by Eq. (3.45) whose coefficients are given in Eq. (3.51), there are
still mode couplings. However, the Kaiser equation holds for independent Fourier modes, and is diagonal. It is thus
clear that a further approximation needs to be performed to obtain an equation involving uncoupled modes. In fact,
in order to find the plane-parallel result (3.51), one had to consider the configuration space part of the plane-parallel
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in order to find the plane-parallel expansion in Fourier space, we had to go through a mixed configuration/Fourier
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3. Plane-parallel limit in Fourier space

As emphasized in Sec. II.B, the Fourier mode associated with the difference of positions is the median Fourier mode,
and the Fourier mode associated with the median position is the difference of the Fourier modes, as can be seen on
Eq. (2.3). This is paramount to understand the structure of the Fourier space. It is thus natural to use the variables

k ≡ (k1 + k2)

2
, ∆k ≡ k1 − k2 , (3.43)

to parametrize the correlation functions in Fourier space. Defining µk∆ ≡ k̂ · ∆̂k and ν12 ≡ k̂1 · k̂2, they are related
through

k21 = k2 + (∆k/2)2 + k (∆k)µk∆ (3.44a)

k22 = k2 + (∆k/2)2 − k (∆k)µk∆ (3.44b)

k1k2 ν12 = k2 − (∆k/2)2 (3.44c)

k21k
2
2(1 − ν212) = k2(∆k)2(1 − µ2

k∆) . (3.44d)

Since the plane-parallel limit in configuration space is the limit where r ≪ d, then in Fourier space it corresponds
to |∆k| ≫ k. Following this logic, we need to find the behaviour of Eq. (3.42) under this limit. We find in this section
that it is of the form

ζzpp(∆k,k) ≡ Cz
pp(k1,k2) = δD(∆k)ζ(0)ℓ (k) +

1

4π|∆k|3
∑

ℓ=2,4

ζ(0)ℓ (k)Pℓ(µk∆) . (3.45)

The kernel N (k,k′) appearing in Eq. (3.42) can be computed explicitly. However this requires to deal with the
singular point k = k′. We thus need to use the relation [see Eq. (3.46) of Blanchet et al. (2004)]

Ok
1

4π|k− k′| = OPV
k

1

4π|k− k′| −
1

3
δ(k− k′) , (3.46)

where the superscript PV refers to the principal value. Using the geometrical relations (3.44) yields

4πN (k1,k2) = − 2|k|2

|∆k|3P2(µk∆) +
1

2|∆k| + 4π
|k|2

3
δD(∆k) . (3.47)

The first two terms are the regular part, and the last term is the distributional component of the kernel. This latter
term contributes necessarily to the lowest order, that is to the plane-parallel limit, since it is necessarily diagonal in
Fourier space. By dimensional analysis, the plane-parallel limit of the first two terms is necessarily proportional to
1/|∆k|3, and this is another way to realize that the expansion must take the form (3.45). The plane-parallel limit of
the kernel N k(∆k) is then found to be

4πN (k1,k2) = − 2k2

|∆k|3P2(µk∆) +
4πk2

3
δD(∆k) . (3.48)

Using this limit, the plane-parallel limit of the Fourier space correlation (3.42) is

ζzpp(∆k,k) = P(k)δD(∆k) + 2β
P(k)

k2
N k(∆k) + (2π)3/2β2P(k)

k4

∫
d3∆p

(2π)3/2
N k(∆p)N k(∆k−∆p) . (3.49)

It is not expressed in the desired form (3.45) yet, due to the last integral. However if we notice that this is a convolution
(defined with the (2π)3/2 factor) of a function with itself, then we can directly say that its Fourier transform is the
product of the individual Fourier transforms. The inverse Fourier transform of the plane-parallel kernel is just

Ñ k(d) ≡
∫

d3∆p

(2π)3/2
N̄k(∆p)ei∆p·d =

1

(2π)3/2

(
2

3
k2P2(µk d) +

1

3
k2
)

=
k2 µ2

kd

(2π)3/2
, (3.50)

where we used the Rayleigh formula to expand the exponential, and Weber integrals (see Appendix A.4) for the
radial integration on spherical Bessel functions. Finally, the coefficients of the plane-parallel limit of the Fourier space
correlation function, as defined in Eq. (3.45), are
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The first two terms are the regular part, and the last term is the distributional component of the kernel. This latter
term contributes necessarily to the lowest order, that is to the plane-parallel limit, since it is necessarily diagonal in
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Using this limit, the plane-parallel limit of the Fourier space correlation (3.42) is
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It is not expressed in the desired form (3.45) yet, due to the last integral. However if we notice that this is a convolution
(defined with the (2π)3/2 factor) of a function with itself, then we can directly say that its Fourier transform is the
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where we used the Rayleigh formula to expand the exponential, and Weber integrals (see Appendix A.4) for the
radial integration on spherical Bessel functions. Finally, the coefficients of the plane-parallel limit of the Fourier space
correlation function, as defined in Eq. (3.45), are
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This result is not the Kaiser formula in Fourier space as originally derived in Kaiser (1987). In fact in the plane-parallel
limit of the correlation function in Fourier space given by Eq. (3.45) whose coefficients are given in Eq. (3.51), there are
still mode couplings. However, the Kaiser equation holds for independent Fourier modes, and is diagonal. It is thus
clear that a further approximation needs to be performed to obtain an equation involving uncoupled modes. In fact,
in order to find the plane-parallel result (3.51), one had to consider the configuration space part of the plane-parallel
kernel in Eq. (3.50), using the median distance d rather than the difference of Fourier modes ∆k. This means that
in order to find the plane-parallel expansion in Fourier space, we had to go through a mixed configuration/Fourier
space temporarily. We shall find that the Kaiser formula arises naturally in this mixed space. And as mentioned in
Sec. II.C, once the coefficients of the double expansion in this mixed space are known, the coefficients of the double
expansion ζnℓ in the Fourier space can be deduced extremely easily, since they are related by simple numerical factors.
The next section is devoted to the computation of the plane-parallel approximation in this mixed spaced, allowing
then to explain how the Kaiser formula arises in the subsequent section.

4. Plane-parallel limit in mixed configuration/Fourier space

The plane-parallel limit of the correlation function in the mixed space is obtained by inverse transforming the
Fourier space correlation (3.49). With the help of the Fourier transformed plane-parallel Kernel (3.50), we get
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The angular dependence of this expression can be decomposed onto Legendre polynomials in the form
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Alternatively, one could also obtain the plane-parallel limit in the mixed space by taking the Fourier transform of
the configuration space correlation function (3.27) in that same limit, that is with

ξ̂zpp(d,k) ≡
∫

d3r

(2π)3/2
ξzpp(d, r)e

−ik·r . (3.56)

Expanding the exponential in Legendre polynomials with the Rayleigh expansion (A8), and then performing the
integral on the polar angle using the orthogonality relations of Legendre polynomials (A26), we get

ξ̂zpp(d,k) =
∑

ℓ=0,2,4

[√
2

π
(−i)ℓ

∫
drr2jℓ(kr)ξ

(0)
ℓ (r)

]
Pℓ(µk d) . (3.57)

The object inside squared brackets in this expression is the Hankel transform of the ξ0ℓ (r). Inserting Eqs. (3.28) in
(3.57), and using the orthogonality of spherical Bessel functions (A13), we can check that

ξ̂zpp(d,k) = ζ̃zpp(d,k) , (3.58)

meaning that we can obtain correlation functions in this mixed configuration/Fourier space in two different, but

equivalent ways. Either we Fourier transform ξz(d, r) on the second variable obtaining ξ̂z(d,k), or we take and

inverse Fourier transform on ζz(∆k,k) on the first variable obtaining ζ̃z(d,k). These two objects are intermediate
steps between full configuration or full Fourier space quantities, and we have explicitly verified here their equivalence
in the plane-parallel limit.
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The object inside squared brackets in this expression is the Hankel transform of the ξ0ℓ (r). Inserting Eqs. (3.28) in
(3.57), and using the orthogonality of spherical Bessel functions (A13), we can check that
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meaning that we can obtain correlation functions in this mixed configuration/Fourier space in two different, but

equivalent ways. Either we Fourier transform ξz(d, r) on the second variable obtaining ξ̂z(d,k), or we take and

inverse Fourier transform on ζz(∆k,k) on the first variable obtaining ζ̃z(d,k). These two objects are intermediate
steps between full configuration or full Fourier space quantities, and we have explicitly verified here their equivalence
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steps between full configuration or full Fourier space quantities, and we have explicitly verified here their equivalence
in the plane-parallel limit.
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This result is not the Kaiser formula in Fourier space as originally derived in Kaiser (1987). In fact in the plane-parallel
limit of the correlation function in Fourier space given by Eq. (3.45) whose coefficients are given in Eq. (3.51), there are
still mode couplings. However, the Kaiser equation holds for independent Fourier modes, and is diagonal. It is thus
clear that a further approximation needs to be performed to obtain an equation involving uncoupled modes. In fact,
in order to find the plane-parallel result (3.51), one had to consider the configuration space part of the plane-parallel
kernel in Eq. (3.50), using the median distance d rather than the difference of Fourier modes ∆k. This means that
in order to find the plane-parallel expansion in Fourier space, we had to go through a mixed configuration/Fourier
space temporarily. We shall find that the Kaiser formula arises naturally in this mixed space. And as mentioned in
Sec. II.C, once the coefficients of the double expansion in this mixed space are known, the coefficients of the double
expansion ζnℓ in the Fourier space can be deduced extremely easily, since they are related by simple numerical factors.
The next section is devoted to the computation of the plane-parallel approximation in this mixed spaced, allowing
then to explain how the Kaiser formula arises in the subsequent section.

4. Plane-parallel limit in mixed configuration/Fourier space

The plane-parallel limit of the correlation function in the mixed space is obtained by inverse transforming the
Fourier space correlation (3.49). With the help of the Fourier transformed plane-parallel Kernel (3.50), we get
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The angular dependence of this expression can be decomposed onto Legendre polynomials in the form
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Alternatively, one could also obtain the plane-parallel limit in the mixed space by taking the Fourier transform of
the configuration space correlation function (3.27) in that same limit, that is with

ξ̂zpp(d,k) ≡
∫

d3r

(2π)3/2
ξzpp(d, r)e

−ik·r . (3.56)

Expanding the exponential in Legendre polynomials with the Rayleigh expansion (A8), and then performing the
integral on the polar angle using the orthogonality relations of Legendre polynomials (A26), we get

ξ̂zpp(d,k) =
∑

ℓ=0,2,4
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(−i)ℓ

∫
drr2jℓ(kr)ξ

(0)
ℓ (r)

]
Pℓ(µk d) . (3.57)

The object inside squared brackets in this expression is the Hankel transform of the ξ0ℓ (r). Inserting Eqs. (3.28) in
(3.57), and using the orthogonality of spherical Bessel functions (A13), we can check that

ξ̂zpp(d,k) = ζ̃zpp(d,k) , (3.58)

meaning that we can obtain correlation functions in this mixed configuration/Fourier space in two different, but

equivalent ways. Either we Fourier transform ξz(d, r) on the second variable obtaining ξ̂z(d,k), or we take and

inverse Fourier transform on ζz(∆k,k) on the first variable obtaining ζ̃z(d,k). These two objects are intermediate
steps between full configuration or full Fourier space quantities, and we have explicitly verified here their equivalence
in the plane-parallel limit.
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The object inside squared brackets in this expression is the Hankel transform of the ξ0ℓ (r). Inserting Eqs. (3.28) in
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equivalent ways. Either we Fourier transform ξz(d, r) on the second variable obtaining ξ̂z(d,k), or we take and

inverse Fourier transform on ζz(∆k,k) on the first variable obtaining ζ̃z(d,k). These two objects are intermediate
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FIG. 3 Relations between ξz(d, r), ζz(∆k,k), ξ̂z(d,k), and ζ̃z(d,k). The hat denotes Fourier transform on the second variable,
a tilde denotes (inverse) Fourier transform on the first variable. Arrows pointing to the right indicate Fourier transforms while
arrows pointing to the left indicate inverse Fourier transforms. The objects inside the box are equivalent.

5. Recovering the original Kaiser formula

The first method to obtain the Kaiser formula consists in making the substitution µkd → µk z in the plane-parallel
limit (3.53) of the correlation function expressed in the mixed configuration/Fourier space, i.e. we consider that the
geometrical dependence is a function of the angle determined by k and the z axis. This particular z direction is chosen
as being some average direction of the survey considered. With this extra approximation, we can take the inverse
Fourier transform to obtain

ζzpp(∆k,k) ≈ ζz
Kaiser

(∆k,k) = δD(∆k)P(k)(1 + βµ2
k z)

2 = δD(∆k)
∑

ℓ=0,2,4

P(0)
ℓ (k)Pℓ(µk z) (3.59)

which is now the Kaiser limit as originally derived (Kaiser, 1987). The main consequence of the Kaiser approximation,
is that the correlation function is now perfectly diagonal, as it would be for a homogeneous distribution, but it still
keeps a directional dependence.
However, it is not a well defined object in Fourier space, since the angle µk z makes reference to the direction of

the z axis, defined in configuration space, and for which there is no unambiguous definition. The expression (3.53)
now gives a clear meaning to Eq. (3.59). Indeed, only the power-spectrum at a given distance d is well defined, and
it has by definition a mixed dependence on variables in configuration and Fourier spaces. The crossed conjugation
of variables in configuration and Fourier spaces allows to use geometrical arguments to define a plane-parallel limit
inside the framework of Fourier space correlations, but still referring to the position space.
Since we have also shown in the previous section that the mixed space expression can be obtained from the

configuration space correlation function, the second method to obtain the Kaiser formula consists in performing the
replacement µr d → µr z in the expression (3.27) of ξzpp(d, r). Again the direction z is ambiguously defined, and
is usually some average direction in the survey. In that case the dependence in d drops out, that is we use the
approximation

ξzpp(d, r) ≈ ξz
Kaiser

(r) =
∑

ℓ=0,2,4

ξ(0)ℓ (r)Pℓ(µdz) . (3.60)

When going to the full Fourier space we get

ζz
Kaiser

(∆k,k) =

∫
d3r1

(2π)3/2

∫
d3r2

(2π)3/2
ξz
Kaiser

(r)eik1·r1−ik2·r2 =

∫
d3d

(2π)3/2
eid·∆k

∫
d3r

(2π)3/2
e−ik·rξz

Kaiser
(r)

= (2π)3/2δD(∆k)

∫
d3r

(2π)3/2
ξz
Kaiser

(r)e−ik·r , (3.61)

and with the expansion (3.60), we also recover the Kaiser limit (3.59).

D. Multipole decompositions and angular correlations

When calculating the effect of RSD on the correlation function in Fourier space, we derived that Cz(k1,k2) is
given in terms of the kernel K(k1,k2) by Eq. (3.35), and also that the kernel K admits a decomposition in a basis of
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and with the expansion (3.60), we also recover the Kaiser limit (3.59).

D. Multipole decompositions and angular correlations

When calculating the effect of RSD on the correlation function in Fourier space, we derived that Cz(k1,k2) is
given in terms of the kernel K(k1,k2) by Eq. (3.35), and also that the kernel K admits a decomposition in a basis of
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This result is not the Kaiser formula in Fourier space as originally derived in Kaiser (1987). In fact in the plane-parallel
limit of the correlation function in Fourier space given by Eq. (3.45) whose coefficients are given in Eq. (3.51), there are
still mode couplings. However, the Kaiser equation holds for independent Fourier modes, and is diagonal. It is thus
clear that a further approximation needs to be performed to obtain an equation involving uncoupled modes. In fact,
in order to find the plane-parallel result (3.51), one had to consider the configuration space part of the plane-parallel
kernel in Eq. (3.50), using the median distance d rather than the difference of Fourier modes ∆k. This means that
in order to find the plane-parallel expansion in Fourier space, we had to go through a mixed configuration/Fourier
space temporarily. We shall find that the Kaiser formula arises naturally in this mixed space. And as mentioned in
Sec. II.C, once the coefficients of the double expansion in this mixed space are known, the coefficients of the double
expansion ζnℓ in the Fourier space can be deduced extremely easily, since they are related by simple numerical factors.
The next section is devoted to the computation of the plane-parallel approximation in this mixed spaced, allowing
then to explain how the Kaiser formula arises in the subsequent section.

4. Plane-parallel limit in mixed configuration/Fourier space

The plane-parallel limit of the correlation function in the mixed space is obtained by inverse transforming the
Fourier space correlation (3.49). With the help of the Fourier transformed plane-parallel Kernel (3.50), we get

ζ̃zpp(d,k) ≡
∫

d3∆k

(2π)3/2
ζzpp(∆k,k)ei∆k·d (3.52)

=
P(k)

(2π)3/2
(1 + βµ2

k d)
2 . (3.53)

The angular dependence of this expression can be decomposed onto Legendre polynomials in the form

ζ̃zpp(d,k) =
∑

ℓ=0,2,4

P(0)
ℓ (k)Pℓ(µkd) , (3.54)

with coefficients

P(0)
0 (k) =

(
1 +

2

3
β +

1

5
β2

)
P(k)

(2π)3/2
, P(0)

2 (k) =

(
4

3
β +

4

7
β2

)
P(k)

(2π)3/2
, P(0)

4 (k) =
8

35
β2 P(k)

(2π)3/2
. (3.55)

Alternatively, one could also obtain the plane-parallel limit in the mixed space by taking the Fourier transform of
the configuration space correlation function (3.27) in that same limit, that is with

ξ̂zpp(d,k) ≡
∫

d3r

(2π)3/2
ξzpp(d, r)e

−ik·r . (3.56)

Expanding the exponential in Legendre polynomials with the Rayleigh expansion (A8), and then performing the
integral on the polar angle using the orthogonality relations of Legendre polynomials (A26), we get

ξ̂zpp(d,k) =
∑

ℓ=0,2,4

[√
2

π
(−i)ℓ

∫
drr2jℓ(kr)ξ

(0)
ℓ (r)

]
Pℓ(µk d) . (3.57)

The object inside squared brackets in this expression is the Hankel transform of the ξ0ℓ (r). Inserting Eqs. (3.28) in
(3.57), and using the orthogonality of spherical Bessel functions (A13), we can check that

ξ̂zpp(d,k) = ζ̃zpp(d,k) , (3.58)

meaning that we can obtain correlation functions in this mixed configuration/Fourier space in two different, but

equivalent ways. Either we Fourier transform ξz(d, r) on the second variable obtaining ξ̂z(d,k), or we take and

inverse Fourier transform on ζz(∆k,k) on the first variable obtaining ζ̃z(d,k). These two objects are intermediate
steps between full configuration or full Fourier space quantities, and we have explicitly verified here their equivalence
in the plane-parallel limit.
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β2P(k) . (3.51)
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The object inside squared brackets in this expression is the Hankel transform of the ξ0ℓ (r). Inserting Eqs. (3.28) in
(3.57), and using the orthogonality of spherical Bessel functions (A13), we can check that

ξ̂zpp(d,k) = ζ̃zpp(d,k) , (3.58)

meaning that we can obtain correlation functions in this mixed configuration/Fourier space in two different, but

equivalent ways. Either we Fourier transform ξz(d, r) on the second variable obtaining ξ̂z(d,k), or we take and

inverse Fourier transform on ζz(∆k,k) on the first variable obtaining ζ̃z(d,k). These two objects are intermediate
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where ν is the cosine of the polar angle and ϕ the azimuthal angle of r̂ in a spherical coordinates system. When it
brings no ambiguity, we will omit the index in L2

r̂. We then get from Eq. (3.11) an equivalent relation between the
two types of densities which is

δz(r) = (1 + β)δ(r) − β

r2
L2
r̂ ∆

−1δ(r) . (3.13)

We emphasize that we assume a constant selection function, and also that β and P(k) are assumed to have no time
dependence.

B. Redshift-space distortions in configuration space

1. General expression of the correlation function

We first start by deriving the two-point correlation function of distorted densities in configuration space, using the
previous relation (3.11). We do not assume that the angle separation is small to begin with, so as to obtain the most
general expression. In the next section, we then detail how we can recover the usual plane-parallel limit, known as
the Kaiser formula. The statistics of the fundamental field δ is known in Fourier space, as it is given by the matter
power spectrum defined by

C(k1,k2) ≡ ⟨δ(k1)δ
⋆(k2)⟩ = P(k)δD(k1 − k2) . (3.14)

Hence, we first need to obtain the distorted field δz in configuration space as a function of the underlying density field
δ in Fourier space. Given that the Fourier transform of ∆−1δ is −δ(k)/k2, we get immediately from Eq. (3.11) that
this relation takes the form

δz(r) =

∫
d3k

(2π)3/2
δ(k)

[
1− β

k2
Or

]
eik·r . (3.15)

Correlating the distorted field in two different points, we use Eq. (3.14) to remove one of the two Fourier integrals,
and the other one is performed easily in spherical coordinates once the exponential is expanded in spherical harmonics
with the Rayleigh expansion (A8). We finally obtain

Cz(r1, r2) =

∫
k2dk

2π2
P(k)

[
1− β

k2
Or1

] [
1− β

k2
Or2

]
j0(kr) , (3.16)

where we have defined the difference of positions and the associated norm as

r ≡ r2 − r1 , r2 = r21 + r22 − 2r1r2ν12 , ν12 ≡ r̂1 · r̂2 . (3.17)

In order to express the radial operators Or1 and Or2 , we first use that

∆ = Or1 +
L2
r̂1

r21
= Or2 +

L2
r̂2

r22
. (3.18)

We then note that the radial operators are only applied on a function of r in Eq. (3.16), where r, r1 and r2 are in a
triangular configuration. For any function f(r)

Or1f(r) = ∆f(r)− 1

r21
L2
r̂1
f(r) = Orf(r) −

L2
ν12

r21
f(r) , Or2f(r) = Orf(r) −

L2
ν12

r22
f(r) (3.19)

where we have used i) that for a function of r only, the Laplacian reduces to Or, the partial derivative ∂r becoming
in that case total derivatives, and ii) that the angular operators L2

r̂1
and L2

r̂2
do not depend on the azimuthal angle,

as they depend only on the polar angle, and thus both reduce to L2
ν12 .

With these relations and Eq. (A7) we can recast (3.16) as

Cz(r1, r2) =

∫
k2dk

2π2
P(k)I [j0(kr)] , I [j0(kr)] ≡

[
1 + β +

βL2
ν12

(kr1)2

] [
1 + β +

βL2
ν12

(kr2)2

]
j0(kr) . (3.20)

Note that this result could also have been obtained by using the relation (3.13) between the distorted and the
underlying matter densities. This expression for the correlation function in configuration space is the first major

2

Background analysis. For every distance, this leads to define the associated multipoles δzℓm(r), and since the redshift-
space distortions do not break the statistical isotropy around the observer, the statistics is encoded in the diagonal
part of the multipoles correlations, that is

⟨δzℓm(r1)δ
z
ℓ′m′(r2)⟩ = δℓℓ′δmm′Cz

ℓ (r1, r2). (1.2)

Both the expression found with the configuration space approach in Papai and Szapudi (2008) and the one derived
with a multipole approach in Bonvin and Durrer (2011) are much more complicated than the simple original Kaiser
formula that holds in the plane-parallel limit. In this article, our second goal is to relate both approaches and to link
them with our perturbative expansion around the plane-parallel limit.

II. OVERVIEW OF RESULTS

A. Wide angle effects in configuration space

The structure of the correlation function depends only on the shape of a triangle formed by the observer and
the sources at r1 and r2. The plane-parallel limit corresponds to a squeezed configuration of this triangle where
r = r2 − r1 is much smaller in norm than r1 and r2. In order to expand the correlation functions around this plane-
parallel approximation, it appears more appropriate to consider the correlation functions as depending on r and the
median distance d as illustrated in Fig. 1, with the definitions

ξz(d, r) ≡ Cz(r1, r2) ≡ ⟨δz(r1)δz(r2)⟩ , r ≡ r2 − r1 , d ≡ r1 + r2

2
. (2.1)

In this article we give the general expression for the correlation function in configuration space, checking that we
recover the results of previously existing literature, and we then expand it around its plane-parallel limit so as to
grasp the structure of the wide angle corrections. We also show that instead of using the median position d as an
average position, it is possible to use the bisector to define another type of average position, as it leads to the same
plane-parallel limit.
If the correlation function was statistically homogeneous, then it would depend only on r, and not on d. And if it

was also statistically isotropic, it would actually depend only on one degree of freedom, r. This would be the case if
RSD effects were ignored. However the distorted field is not homogeneous as it also depends on the velocity of the
source with respect to the observer, and not just on the velocity independently. Nevertheless, the global rotational
invariance around the observer removes three degrees of freedom, implying that the correlation function is only a
function of three degrees of freedom which are r, d and µd r ≡ r̂ · d̂. In the plane-parallel limit, it depends on r and
µ, but not on d. It is thus appropriate to expand the general two point correlation function as a general angular
multipole expansion

ξz(d, r) =
∞∑

n=0

( r
d

)n ∞∑

ℓ=0

ξ(n)ℓ (r)Pℓ(µd r) , with µd r ≡ r̂ · d̂ . (2.2)

The ξ(0)ℓ are the lowest order coefficients which arise in the plane-parallel limit, and to be more precise, only ξ(0)0 , ξ(0)2 ,

ξ(0)4 are non-vanishing. The ξ(n>0)
ℓ describe then corrections due to wide angle effects. The natural small parameter

for this expansion is the ratio between the distance between two points being correlated, and their average distance
from the observer, that is r/d. The further the two points are with respect to the observer, the smaller the corrections
are. The geometrical structure at each order is described by the angular variable which depends only on the relative
directions between the difference of positions r and the average direction d, that is it depends only on µ. We find

that the coefficients ξ(n)ℓ in the expansion (2.2) are non-vanishing only if ℓ and n are either both odd or both even.
Furthermore, we show that for the median and the bisector parametrizations of the average distance, these coefficients

do not vanish only if ℓ and n are both even. As a consequence, the first order corrections ξ(1)ℓ vanish, and these choices

should thus be preferred to minimize the wide angle effects. In these cases, we compute explicitly the ξ(n)ℓ up to second
order providing the first set of corrections to the plane-parallel limit.

B. Wide angle effects in Fourier space

In order to understand how such expansion arises in Fourier space, one must first realize that when performing
a double Fourier transformation on a function whose variables are related in a triangular configuration, the Fourier

3

d

r/2
r/2

r1

r2 k1
k2

Δk/2
Δk/2

k

FIG. 1 Effect of Fourier transform on variables constrained to a triangular geometry. The Fourier conjugate of r1 is k1, the
Fourier conjugate of r2 is k2; the Fourier conjugate of d is ∆k = k1 − k2, while the conjugate of r is k.

conjugate to the difference of positions r is the median Fourier modes k, and the Fourier conjugate to the median
distance d is the difference of the Fourier modes ∆k. This geometry of the Fourier space is illustrated in Fig. 1. This
basic geometrical relation can be understood in two steps. First, for α > 0, the Fourier transform of Cz(αr1, r2) is
1
αC

z(k1

α ,k2), i.e., dilatations (resp. contractions) in configuration space lead to contractions (resp. dilatations) in
Fourier space, and therefore if r1 is shorter than r2, k1 will be longer than k2. Secondly, when performing a Fourier
transformation on a two point correlation function, we introduce the product

eik1·r1e−ik2·r2 = eid·∆ke−ir·k , with k ≡ (k1 + k2)/2 , ∆k ≡ k1 − k2 , (2.3)

from where the crossed conjugate relation among median and difference of modes can be inferred. It is thus natural
to define the correlation function in Fourier space using these variables as

ζz(∆k,k) ≡ Cz(k1,k2) ≡ ⟨δz(k1)δ
z⋆(k2)⟩ . (2.4)

The homogeneity in Fourier space is expressed by the fact that the correlation function depends only on the average
Fourier mode, and not on the difference. The inhomogeneity introduced by the RSD effects translates into the fact
that in Fourier space there are off-diagonal correlations. In this article, we derive the general expression for the
correlation function in Fourier space and exhibit the off-diagonal contributions. Following the correspondence (2.3),
the corrections introduced should be expressed as an expansion in |∆k|/k in the form

ζz(∆k,k) = δD(∆k)ζ(0)0 (k) +
1

4π|∆k|3
∞∑

n=0

(
|∆k|
k

)n ∞∑

ℓ=0
(ℓ,n)≠(0,0)

ζ(n)ℓ (k)Pℓ(µk∆) , with µk∆ ≡ k̂ · ∆̂k . (2.5)

The ζ(0)ℓ (k) correspond to the homogeneous contribution of the plane-parallel limit, for which only ζ(0)0 , ζ(0)2 , ζ(0)4 are

non vanishing. The ζ(n>0)
ℓ are the wide angle corrections which break homogeneity. For each order, the geometrical

dependence is only a function of the angle between the average Fourier modes and the difference of the Fourier modes,
and this is understood from the correspondence (2.3). We do not perform such expansion explicitly except for the
lowest order corresponding to the plane-parallel limit.

C. Wide-angle effects in mixed configuration/Fourier space

In fact the RSD effects can also be apprehended using a mixed space, where the median distance is looked at in
configuration space, but the dependence in the separation of the sources is considered in Fourier space. This can be
obtained either by Fourier transforming the r dependence, that is considering ξ̂z(d,k) instead of in ξz(d, r), or by

inverse Fourier transforming the ∆k dependence, that is by considering ζ̃z(d,k) instead of ζz(∆k,k). We check that
both approaches lead to the same result as they ought to. In this mixed space the natural expansion is

ξ̂z(d,k) = ζ̃z(d,k) =
∞∑

n=0

(
1

kd

)n ∞∑

ℓ=0

P(n)
ℓ (k)Pℓ(µk d) , µkd ≡ k̂ · d̂ . (2.6)

r

d
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<latexit sha1_base64="6J43WGoWD8QtiOSkWNZqKBj2GPI=">AAAB9HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68VjBfkAbymazaZduNnF3Uiihv8OLB0W8+mO8+W/ctjlo64OBx3szzMwLUikMuu63s7a+sbm1Xdop7+7tHxxWjo5bJsk0402WyER3Amq4FIo3UaDknVRzGgeSt4PR3cxvj7k2IlGPOEm5H9OBEpFgFK3k9yJNWe5N8xEJp/1K1a25c5BV4hWkCgUa/cpXL0xYFnOFTFJjup6bop9TjYJJPi33MsNTykZ0wLuWKhpz4+fzo6fk3CohiRJtSyGZq78nchobM4kD2xlTHJplbyb+53UzjG78XKg0Q67YYlGUSYIJmSVAQqE5QzmxhDIt7K2EDanNAW1OZRuCt/zyKmld1jy35j1cVeu3RRwlOIUzuAAPrqEO99CAJjB4gmd4hTdn7Lw4787HonXNKWZO4A+czx+qoJIE</latexit><latexit sha1_base64="6J43WGoWD8QtiOSkWNZqKBj2GPI=">AAAB9HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68VjBfkAbymazaZduNnF3Uiihv8OLB0W8+mO8+W/ctjlo64OBx3szzMwLUikMuu63s7a+sbm1Xdop7+7tHxxWjo5bJsk0402WyER3Amq4FIo3UaDknVRzGgeSt4PR3cxvj7k2IlGPOEm5H9OBEpFgFK3k9yJNWe5N8xEJp/1K1a25c5BV4hWkCgUa/cpXL0xYFnOFTFJjup6bop9TjYJJPi33MsNTykZ0wLuWKhpz4+fzo6fk3CohiRJtSyGZq78nchobM4kD2xlTHJplbyb+53UzjG78XKg0Q67YYlGUSYIJmSVAQqE5QzmxhDIt7K2EDanNAW1OZRuCt/zyKmld1jy35j1cVeu3RRwlOIUzuAAPrqEO99CAJjB4gmd4hTdn7Lw4787HonXNKWZO4A+czx+qoJIE</latexit><latexit sha1_base64="6J43WGoWD8QtiOSkWNZqKBj2GPI=">AAAB9HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68VjBfkAbymazaZduNnF3Uiihv8OLB0W8+mO8+W/ctjlo64OBx3szzMwLUikMuu63s7a+sbm1Xdop7+7tHxxWjo5bJsk0402WyER3Amq4FIo3UaDknVRzGgeSt4PR3cxvj7k2IlGPOEm5H9OBEpFgFK3k9yJNWe5N8xEJp/1K1a25c5BV4hWkCgUa/cpXL0xYFnOFTFJjup6bop9TjYJJPi33MsNTykZ0wLuWKhpz4+fzo6fk3CohiRJtSyGZq78nchobM4kD2xlTHJplbyb+53UzjG78XKg0Q67YYlGUSYIJmSVAQqE5QzmxhDIt7K2EDanNAW1OZRuCt/zyKmld1jy35j1cVeu3RRwlOIUzuAAPrqEO99CAJjB4gmd4hTdn7Lw4787HonXNKWZO4A+czx+qoJIE</latexit><latexit sha1_base64="6J43WGoWD8QtiOSkWNZqKBj2GPI=">AAAB9HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68VjBfkAbymazaZduNnF3Uiihv8OLB0W8+mO8+W/ctjlo64OBx3szzMwLUikMuu63s7a+sbm1Xdop7+7tHxxWjo5bJsk0402WyER3Amq4FIo3UaDknVRzGgeSt4PR3cxvj7k2IlGPOEm5H9OBEpFgFK3k9yJNWe5N8xEJp/1K1a25c5BV4hWkCgUa/cpXL0xYFnOFTFJjup6bop9TjYJJPi33MsNTykZ0wLuWKhpz4+fzo6fk3CohiRJtSyGZq78nchobM4kD2xlTHJplbyb+53UzjG78XKg0Q67YYlGUSYIJmSVAQqE5QzmxhDIt7K2EDanNAW1OZRuCt/zyKmld1jy35j1cVeu3RRwlOIUzuAAPrqEO99CAJjB4gmd4hTdn7Lw4787HonXNKWZO4A+czx+qoJIE</latexit>

⇠(n)` : R ! R
<latexit sha1_base64="lc5VwUVDkGyvKNvfk5fgju1d92w=">AAACE3icbVC7TsMwFHV4lvIKMLJYVEiFoUoQEoipgoWxIPqQmhA5rtNadZzIdhBVlH9g4VdYGECIlYWNv8FpM5SWI1k6Pude3XuPHzMqlWX9GAuLS8srq6W18vrG5ta2ubPbklEiMGniiEWi4yNJGOWkqahipBMLgkKfkbY/vMr99gMRkkb8To1i4oaoz2lAMVJa8sxj55F6DmHsPq3yowxeQCdEauD76W0GHRVNfT2zYtWsMeA8sQtSAQUanvnt9CKchIQrzJCUXduKlZsioShmJCs7iSQxwkPUJ11NOQqJdNPxTRk81EoPBpHQjys4Vqc7UhRKOQp9XZlvKGe9XPzP6yYqOHdTyuNEEY4ng4KEQX1rHhDsUUGwYiNNEBZU7wrxAAmElY6xrEOwZ0+eJ62Tmm3V7JvTSv2yiKME9sEBqAIbnIE6uAYN0AQYPIEX8AbejWfj1fgwPielC0bRswf+wPj6BTFrnbo=</latexit><latexit sha1_base64="lc5VwUVDkGyvKNvfk5fgju1d92w=">AAACE3icbVC7TsMwFHV4lvIKMLJYVEiFoUoQEoipgoWxIPqQmhA5rtNadZzIdhBVlH9g4VdYGECIlYWNv8FpM5SWI1k6Pude3XuPHzMqlWX9GAuLS8srq6W18vrG5ta2ubPbklEiMGniiEWi4yNJGOWkqahipBMLgkKfkbY/vMr99gMRkkb8To1i4oaoz2lAMVJa8sxj55F6DmHsPq3yowxeQCdEauD76W0GHRVNfT2zYtWsMeA8sQtSAQUanvnt9CKchIQrzJCUXduKlZsioShmJCs7iSQxwkPUJ11NOQqJdNPxTRk81EoPBpHQjys4Vqc7UhRKOQp9XZlvKGe9XPzP6yYqOHdTyuNEEY4ng4KEQX1rHhDsUUGwYiNNEBZU7wrxAAmElY6xrEOwZ0+eJ62Tmm3V7JvTSv2yiKME9sEBqAIbnIE6uAYN0AQYPIEX8AbejWfj1fgwPielC0bRswf+wPj6BTFrnbo=</latexit><latexit sha1_base64="lc5VwUVDkGyvKNvfk5fgju1d92w=">AAACE3icbVC7TsMwFHV4lvIKMLJYVEiFoUoQEoipgoWxIPqQmhA5rtNadZzIdhBVlH9g4VdYGECIlYWNv8FpM5SWI1k6Pude3XuPHzMqlWX9GAuLS8srq6W18vrG5ta2ubPbklEiMGniiEWi4yNJGOWkqahipBMLgkKfkbY/vMr99gMRkkb8To1i4oaoz2lAMVJa8sxj55F6DmHsPq3yowxeQCdEauD76W0GHRVNfT2zYtWsMeA8sQtSAQUanvnt9CKchIQrzJCUXduKlZsioShmJCs7iSQxwkPUJ11NOQqJdNPxTRk81EoPBpHQjys4Vqc7UhRKOQp9XZlvKGe9XPzP6yYqOHdTyuNEEY4ng4KEQX1rHhDsUUGwYiNNEBZU7wrxAAmElY6xrEOwZ0+eJ62Tmm3V7JvTSv2yiKME9sEBqAIbnIE6uAYN0AQYPIEX8AbejWfj1fgwPielC0bRswf+wPj6BTFrnbo=</latexit><latexit sha1_base64="lc5VwUVDkGyvKNvfk5fgju1d92w=">AAACE3icbVC7TsMwFHV4lvIKMLJYVEiFoUoQEoipgoWxIPqQmhA5rtNadZzIdhBVlH9g4VdYGECIlYWNv8FpM5SWI1k6Pude3XuPHzMqlWX9GAuLS8srq6W18vrG5ta2ubPbklEiMGniiEWi4yNJGOWkqahipBMLgkKfkbY/vMr99gMRkkb8To1i4oaoz2lAMVJa8sxj55F6DmHsPq3yowxeQCdEauD76W0GHRVNfT2zYtWsMeA8sQtSAQUanvnt9CKchIQrzJCUXduKlZsioShmJCs7iSQxwkPUJ11NOQqJdNPxTRk81EoPBpHQjys4Vqc7UhRKOQp9XZlvKGe9XPzP6yYqOHdTyuNEEY4ng4KEQX1rHhDsUUGwYiNNEBZU7wrxAAmElY6xrEOwZ0+eJ62Tmm3V7JvTSv2yiKME9sEBqAIbnIE6uAYN0AQYPIEX8AbejWfj1fgwPielC0bRswf+wPj6BTFrnbo=</latexit>

P(n)
` : R ! C

<latexit sha1_base64="DkTy1TUHp9QfK4JU7oN1gV7AOK4=">AAACG3icbVDLSsNAFJ34rPUVdelmsAh1U5IiKK6K3bisYh/QxDCZTtuhk0mYmQgl5D/c+CtuXCjiSnDh3zhJg2jrgYEz59zLvff4EaNSWdaXsbS8srq2Xtoob25t7+yae/sdGcYCkzYOWSh6PpKEUU7aiipGepEgKPAZ6fqTZuZ374mQNOS3ahoRN0AjTocUI6Ulz6w7AVJjjFjSSj2HMHaXVPlJCi9gbvh+cpNCR4U/32bqmRWrZuWAi8QuSAUUaHnmhzMIcRwQrjBDUvZtK1JugoSimJG07MSSRAhP0Ij0NeUoINJN8ttSeKyVARyGQj+uYK7+7khQIOU08HVltqGc9zLxP68fq+G5m1AexYpwPBs0jBnUt2ZBwQEVBCs21QRhQfWuEI+RQFjpOMs6BHv+5EXSqddsq2Zfn1Yal0UcJXAIjkAV2OAMNMAVaIE2wOABPIEX8Go8Gs/Gm/E+K10yip4D8AfG5zfII6E8</latexit><latexit sha1_base64="DkTy1TUHp9QfK4JU7oN1gV7AOK4=">AAACG3icbVDLSsNAFJ34rPUVdelmsAh1U5IiKK6K3bisYh/QxDCZTtuhk0mYmQgl5D/c+CtuXCjiSnDh3zhJg2jrgYEz59zLvff4EaNSWdaXsbS8srq2Xtoob25t7+yae/sdGcYCkzYOWSh6PpKEUU7aiipGepEgKPAZ6fqTZuZ374mQNOS3ahoRN0AjTocUI6Ulz6w7AVJjjFjSSj2HMHaXVPlJCi9gbvh+cpNCR4U/32bqmRWrZuWAi8QuSAUUaHnmhzMIcRwQrjBDUvZtK1JugoSimJG07MSSRAhP0Ij0NeUoINJN8ttSeKyVARyGQj+uYK7+7khQIOU08HVltqGc9zLxP68fq+G5m1AexYpwPBs0jBnUt2ZBwQEVBCs21QRhQfWuEI+RQFjpOMs6BHv+5EXSqddsq2Zfn1Yal0UcJXAIjkAV2OAMNMAVaIE2wOABPIEX8Go8Gs/Gm/E+K10yip4D8AfG5zfII6E8</latexit><latexit sha1_base64="DkTy1TUHp9QfK4JU7oN1gV7AOK4=">AAACG3icbVDLSsNAFJ34rPUVdelmsAh1U5IiKK6K3bisYh/QxDCZTtuhk0mYmQgl5D/c+CtuXCjiSnDh3zhJg2jrgYEz59zLvff4EaNSWdaXsbS8srq2Xtoob25t7+yae/sdGcYCkzYOWSh6PpKEUU7aiipGepEgKPAZ6fqTZuZ374mQNOS3ahoRN0AjTocUI6Ulz6w7AVJjjFjSSj2HMHaXVPlJCi9gbvh+cpNCR4U/32bqmRWrZuWAi8QuSAUUaHnmhzMIcRwQrjBDUvZtK1JugoSimJG07MSSRAhP0Ij0NeUoINJN8ttSeKyVARyGQj+uYK7+7khQIOU08HVltqGc9zLxP68fq+G5m1AexYpwPBs0jBnUt2ZBwQEVBCs21QRhQfWuEI+RQFjpOMs6BHv+5EXSqddsq2Zfn1Yal0UcJXAIjkAV2OAMNMAVaIE2wOABPIEX8Go8Gs/Gm/E+K10yip4D8AfG5zfII6E8</latexit><latexit sha1_base64="DkTy1TUHp9QfK4JU7oN1gV7AOK4=">AAACG3icbVDLSsNAFJ34rPUVdelmsAh1U5IiKK6K3bisYh/QxDCZTtuhk0mYmQgl5D/c+CtuXCjiSnDh3zhJg2jrgYEz59zLvff4EaNSWdaXsbS8srq2Xtoob25t7+yae/sdGcYCkzYOWSh6PpKEUU7aiipGepEgKPAZ6fqTZuZ374mQNOS3ahoRN0AjTocUI6Ulz6w7AVJjjFjSSj2HMHaXVPlJCi9gbvh+cpNCR4U/32bqmRWrZuWAi8QuSAUUaHnmhzMIcRwQrjBDUvZtK1JugoSimJG07MSSRAhP0Ij0NeUoINJN8ttSeKyVARyGQj+uYK7+7khQIOU08HVltqGc9zLxP68fq+G5m1AexYpwPBs0jBnUt2ZBwQEVBCs21QRhQfWuEI+RQFjpOMs6BHv+5EXSqddsq2Zfn1Yal0UcJXAIjkAV2OAMNMAVaIE2wOABPIEX8Go8Gs/Gm/E+K10yip4D8AfG5zfII6E8</latexit>

small 
parameterExpansions around plane parallel limit  (n = 0) 

r1
r2d

θv

rv
r(1-v)

v = 0
<latexit sha1_base64="njnGqSPrnu2DvZqlt/DTGKiBlcs=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0ItQ9OKxov2ANpTNdtMu3WzC7qRQQn+CFw+KePUXefPfuG1z0NYHA4/3ZpiZFyRSGHTdb6ewtr6xuVXcLu3s7u0flA+PmiZONeMNFstYtwNquBSKN1Cg5O1EcxoFkreC0d3Mb425NiJWTzhJuB/RgRKhYBSt9Di+cXvlilt15yCrxMtJBXLUe+Wvbj9macQVMkmN6Xhugn5GNQom+bTUTQ1PKBvRAe9YqmjEjZ/NT52SM6v0SRhrWwrJXP09kdHImEkU2M6I4tAsezPxP6+TYnjtZ0IlKXLFFovCVBKMyexv0heaM5QTSyjTwt5K2JBqytCmU7IheMsvr5LmRdVzq97DZaV2m8dRhBM4hXPw4ApqcA91aACDATzDK7w50nlx3p2PRWvByWeO4Q+czx/TZ417</latexit><latexit sha1_base64="njnGqSPrnu2DvZqlt/DTGKiBlcs=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0ItQ9OKxov2ANpTNdtMu3WzC7qRQQn+CFw+KePUXefPfuG1z0NYHA4/3ZpiZFyRSGHTdb6ewtr6xuVXcLu3s7u0flA+PmiZONeMNFstYtwNquBSKN1Cg5O1EcxoFkreC0d3Mb425NiJWTzhJuB/RgRKhYBSt9Di+cXvlilt15yCrxMtJBXLUe+Wvbj9macQVMkmN6Xhugn5GNQom+bTUTQ1PKBvRAe9YqmjEjZ/NT52SM6v0SRhrWwrJXP09kdHImEkU2M6I4tAsezPxP6+TYnjtZ0IlKXLFFovCVBKMyexv0heaM5QTSyjTwt5K2JBqytCmU7IheMsvr5LmRdVzq97DZaV2m8dRhBM4hXPw4ApqcA91aACDATzDK7w50nlx3p2PRWvByWeO4Q+czx/TZ417</latexit><latexit sha1_base64="njnGqSPrnu2DvZqlt/DTGKiBlcs=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0ItQ9OKxov2ANpTNdtMu3WzC7qRQQn+CFw+KePUXefPfuG1z0NYHA4/3ZpiZFyRSGHTdb6ewtr6xuVXcLu3s7u0flA+PmiZONeMNFstYtwNquBSKN1Cg5O1EcxoFkreC0d3Mb425NiJWTzhJuB/RgRKhYBSt9Di+cXvlilt15yCrxMtJBXLUe+Wvbj9macQVMkmN6Xhugn5GNQom+bTUTQ1PKBvRAe9YqmjEjZ/NT52SM6v0SRhrWwrJXP09kdHImEkU2M6I4tAsezPxP6+TYnjtZ0IlKXLFFovCVBKMyexv0heaM5QTSyjTwt5K2JBqytCmU7IheMsvr5LmRdVzq97DZaV2m8dRhBM4hXPw4ApqcA91aACDATzDK7w50nlx3p2PRWvByWeO4Q+czx/TZ417</latexit><latexit sha1_base64="njnGqSPrnu2DvZqlt/DTGKiBlcs=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0ItQ9OKxov2ANpTNdtMu3WzC7qRQQn+CFw+KePUXefPfuG1z0NYHA4/3ZpiZFyRSGHTdb6ewtr6xuVXcLu3s7u0flA+PmiZONeMNFstYtwNquBSKN1Cg5O1EcxoFkreC0d3Mb425NiJWTzhJuB/RgRKhYBSt9Di+cXvlilt15yCrxMtJBXLUe+Wvbj9macQVMkmN6Xhugn5GNQom+bTUTQ1PKBvRAe9YqmjEjZ/NT52SM6v0SRhrWwrJXP09kdHImEkU2M6I4tAsezPxP6+TYnjtZ0IlKXLFFovCVBKMyexv0heaM5QTSyjTwt5K2JBqytCmU7IheMsvr5LmRdVzq97DZaV2m8dRhBM4hXPw4ApqcA91aACDATzDK7w50nlx3p2PRWvByWeO4Q+czx/TZ417</latexit>

n
<latexit sha1_base64="IqW2N36QktBwntGQavLhE1DLrrE=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/XEYzy</latexit><latexit sha1_base64="IqW2N36QktBwntGQavLhE1DLrrE=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/XEYzy</latexit><latexit sha1_base64="IqW2N36QktBwntGQavLhE1DLrrE=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/XEYzy</latexit><latexit sha1_base64="IqW2N36QktBwntGQavLhE1DLrrE=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/XEYzy</latexit>

<̀latexit sha1_base64="NiCNFQINCFG5T4iOY+JPxVaf5XA=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fs7gnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelAhurO9/e6W19Y3NrfJ2ZWd3b/+genjUNnGqGbZYLGLdiahBwRW2LLcCO4lGKiOBj9HkNvcfn1AbHqsHO00wlHSk+JAzanOph0L0qzW/7s9BVklQkBoUaParX71BzFKJyjJBjekGfmLDjGrLmcBZpZcaTCib0BF2HVVUogmz+a0zcuaUARnG2pWyZK7+nsioNGYqI9cpqR2bZS8X//O6qR1ehxlXSWpRscWiYSqIjUn+OBlwjcyKqSOUae5uJWxMNWXWxVNxIQTLL6+S9kU98OvB/WWtcVPEUYYTOIVzCOAKGnAHTWgBgzE8wyu8edJ78d69j0VryStmjuEPvM8fDWaOOw==</latexit><latexit sha1_base64="NiCNFQINCFG5T4iOY+JPxVaf5XA=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fs7gnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelAhurO9/e6W19Y3NrfJ2ZWd3b/+genjUNnGqGbZYLGLdiahBwRW2LLcCO4lGKiOBj9HkNvcfn1AbHqsHO00wlHSk+JAzanOph0L0qzW/7s9BVklQkBoUaParX71BzFKJyjJBjekGfmLDjGrLmcBZpZcaTCib0BF2HVVUogmz+a0zcuaUARnG2pWyZK7+nsioNGYqI9cpqR2bZS8X//O6qR1ehxlXSWpRscWiYSqIjUn+OBlwjcyKqSOUae5uJWxMNWXWxVNxIQTLL6+S9kU98OvB/WWtcVPEUYYTOIVzCOAKGnAHTWgBgzE8wyu8edJ78d69j0VryStmjuEPvM8fDWaOOw==</latexit><latexit sha1_base64="NiCNFQINCFG5T4iOY+JPxVaf5XA=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fs7gnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelAhurO9/e6W19Y3NrfJ2ZWd3b/+genjUNnGqGbZYLGLdiahBwRW2LLcCO4lGKiOBj9HkNvcfn1AbHqsHO00wlHSk+JAzanOph0L0qzW/7s9BVklQkBoUaParX71BzFKJyjJBjekGfmLDjGrLmcBZpZcaTCib0BF2HVVUogmz+a0zcuaUARnG2pWyZK7+nsioNGYqI9cpqR2bZS8X//O6qR1ehxlXSWpRscWiYSqIjUn+OBlwjcyKqSOUae5uJWxMNWXWxVNxIQTLL6+S9kU98OvB/WWtcVPEUYYTOIVzCOAKGnAHTWgBgzE8wyu8edJ78d69j0VryStmjuEPvM8fDWaOOw==</latexit><latexit sha1_base64="NiCNFQINCFG5T4iOY+JPxVaf5XA=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fs7gnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelAhurO9/e6W19Y3NrfJ2ZWd3b/+genjUNnGqGbZYLGLdiahBwRW2LLcCO4lGKiOBj9HkNvcfn1AbHqsHO00wlHSk+JAzanOph0L0qzW/7s9BVklQkBoUaParX71BzFKJyjJBjekGfmLDjGrLmcBZpZcaTCib0BF2HVVUogmz+a0zcuaUARnG2pWyZK7+nsioNGYqI9cpqR2bZS8X//O6qR1ehxlXSWpRscWiYSqIjUn+OBlwjcyKqSOUae5uJWxMNWXWxVNxIQTLL6+S9kU98OvB/WWtcVPEUYYTOIVzCOAKGnAHTWgBgzE8wyu8edJ78d69j0VryStmjuEPvM8fDWaOOw==</latexit>

0
1
2

0, 2, 4
1, 3, 5

0, 2, 4, 6

v = 1/2
<latexit sha1_base64="YQPDb8ohjuZ8RT6r+qdEN0CYu/M=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4qkkR9CIUvXisYD+gDWWznbRLN5uwuymU0N/gxYMiXv1B3vw3btsctPXBwOO9GWbmBYng2rjut7O2vrG5tV3YKe7u7R8clo6OmzpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3c/81hiV5rF8MpME/YgOJA85o8ZKjfGtd1ntlcpuxZ2DrBIvJ2XIUe+Vvrr9mKURSsME1brjuYnxM6oMZwKnxW6qMaFsRAfYsVTSCLWfzY+dknOr9EkYK1vSkLn6eyKjkdaTKLCdETVDvezNxP+8TmrCGz/jMkkNSrZYFKaCmJjMPid9rpAZMbGEMsXtrYQNqaLM2HyKNgRv+eVV0qxWPLfiPV6Va3d5HAU4hTO4AA+uoQYPUIcGMODwDK/w5kjnxXl3Phata04+cwJ/4Hz+ALPHjfE=</latexit><latexit sha1_base64="YQPDb8ohjuZ8RT6r+qdEN0CYu/M=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4qkkR9CIUvXisYD+gDWWznbRLN5uwuymU0N/gxYMiXv1B3vw3btsctPXBwOO9GWbmBYng2rjut7O2vrG5tV3YKe7u7R8clo6OmzpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3c/81hiV5rF8MpME/YgOJA85o8ZKjfGtd1ntlcpuxZ2DrBIvJ2XIUe+Vvrr9mKURSsME1brjuYnxM6oMZwKnxW6qMaFsRAfYsVTSCLWfzY+dknOr9EkYK1vSkLn6eyKjkdaTKLCdETVDvezNxP+8TmrCGz/jMkkNSrZYFKaCmJjMPid9rpAZMbGEMsXtrYQNqaLM2HyKNgRv+eVV0qxWPLfiPV6Va3d5HAU4hTO4AA+uoQYPUIcGMODwDK/w5kjnxXl3Phata04+cwJ/4Hz+ALPHjfE=</latexit><latexit sha1_base64="YQPDb8ohjuZ8RT6r+qdEN0CYu/M=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4qkkR9CIUvXisYD+gDWWznbRLN5uwuymU0N/gxYMiXv1B3vw3btsctPXBwOO9GWbmBYng2rjut7O2vrG5tV3YKe7u7R8clo6OmzpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3c/81hiV5rF8MpME/YgOJA85o8ZKjfGtd1ntlcpuxZ2DrBIvJ2XIUe+Vvrr9mKURSsME1brjuYnxM6oMZwKnxW6qMaFsRAfYsVTSCLWfzY+dknOr9EkYK1vSkLn6eyKjkdaTKLCdETVDvezNxP+8TmrCGz/jMkkNSrZYFKaCmJjMPid9rpAZMbGEMsXtrYQNqaLM2HyKNgRv+eVV0qxWPLfiPV6Va3d5HAU4hTO4AA+uoQYPUIcGMODwDK/w5kjnxXl3Phata04+cwJ/4Hz+ALPHjfE=</latexit><latexit sha1_base64="YQPDb8ohjuZ8RT6r+qdEN0CYu/M=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4qkkR9CIUvXisYD+gDWWznbRLN5uwuymU0N/gxYMiXv1B3vw3btsctPXBwOO9GWbmBYng2rjut7O2vrG5tV3YKe7u7R8clo6OmzpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3c/81hiV5rF8MpME/YgOJA85o8ZKjfGtd1ntlcpuxZ2DrBIvJ2XIUe+Vvrr9mKURSsME1brjuYnxM6oMZwKnxW6qMaFsRAfYsVTSCLWfzY+dknOr9EkYK1vSkLn6eyKjkdaTKLCdETVDvezNxP+8TmrCGz/jMkkNSrZYFKaCmJjMPid9rpAZMbGEMsXtrYQNqaLM2HyKNgRv+eVV0qxWPLfiPV6Va3d5HAU4hTO4AA+uoQYPUIcGMODwDK/w5kjnxXl3Phata04+cwJ/4Hz+ALPHjfE=</latexit>

n
<latexit sha1_base64="IqW2N36QktBwntGQavLhE1DLrrE=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/XEYzy</latexit><latexit sha1_base64="IqW2N36QktBwntGQavLhE1DLrrE=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/XEYzy</latexit><latexit sha1_base64="IqW2N36QktBwntGQavLhE1DLrrE=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/XEYzy</latexit><latexit sha1_base64="IqW2N36QktBwntGQavLhE1DLrrE=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/XEYzy</latexit>

<̀latexit sha1_base64="NiCNFQINCFG5T4iOY+JPxVaf5XA=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fs7gnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelAhurO9/e6W19Y3NrfJ2ZWd3b/+genjUNnGqGbZYLGLdiahBwRW2LLcCO4lGKiOBj9HkNvcfn1AbHqsHO00wlHSk+JAzanOph0L0qzW/7s9BVklQkBoUaParX71BzFKJyjJBjekGfmLDjGrLmcBZpZcaTCib0BF2HVVUogmz+a0zcuaUARnG2pWyZK7+nsioNGYqI9cpqR2bZS8X//O6qR1ehxlXSWpRscWiYSqIjUn+OBlwjcyKqSOUae5uJWxMNWXWxVNxIQTLL6+S9kU98OvB/WWtcVPEUYYTOIVzCOAKGnAHTWgBgzE8wyu8edJ78d69j0VryStmjuEPvM8fDWaOOw==</latexit><latexit sha1_base64="NiCNFQINCFG5T4iOY+JPxVaf5XA=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fs7gnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelAhurO9/e6W19Y3NrfJ2ZWd3b/+genjUNnGqGbZYLGLdiahBwRW2LLcCO4lGKiOBj9HkNvcfn1AbHqsHO00wlHSk+JAzanOph0L0qzW/7s9BVklQkBoUaParX71BzFKJyjJBjekGfmLDjGrLmcBZpZcaTCib0BF2HVVUogmz+a0zcuaUARnG2pWyZK7+nsioNGYqI9cpqR2bZS8X//O6qR1ehxlXSWpRscWiYSqIjUn+OBlwjcyKqSOUae5uJWxMNWXWxVNxIQTLL6+S9kU98OvB/WWtcVPEUYYTOIVzCOAKGnAHTWgBgzE8wyu8edJ78d69j0VryStmjuEPvM8fDWaOOw==</latexit><latexit sha1_base64="NiCNFQINCFG5T4iOY+JPxVaf5XA=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fs7gnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelAhurO9/e6W19Y3NrfJ2ZWd3b/+genjUNnGqGbZYLGLdiahBwRW2LLcCO4lGKiOBj9HkNvcfn1AbHqsHO00wlHSk+JAzanOph0L0qzW/7s9BVklQkBoUaParX71BzFKJyjJBjekGfmLDjGrLmcBZpZcaTCib0BF2HVVUogmz+a0zcuaUARnG2pWyZK7+nsioNGYqI9cpqR2bZS8X//O6qR1ehxlXSWpRscWiYSqIjUn+OBlwjcyKqSOUae5uJWxMNWXWxVNxIQTLL6+S9kU98OvB/WWtcVPEUYYTOIVzCOAKGnAHTWgBgzE8wyu8edJ78d69j0VryStmjuEPvM8fDWaOOw==</latexit><latexit sha1_base64="NiCNFQINCFG5T4iOY+JPxVaf5XA=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fs7gnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelAhurO9/e6W19Y3NrfJ2ZWd3b/+genjUNnGqGbZYLGLdiahBwRW2LLcCO4lGKiOBj9HkNvcfn1AbHqsHO00wlHSk+JAzanOph0L0qzW/7s9BVklQkBoUaParX71BzFKJyjJBjekGfmLDjGrLmcBZpZcaTCib0BF2HVVUogmz+a0zcuaUARnG2pWyZK7+nsioNGYqI9cpqR2bZS8X//O6qR1ehxlXSWpRscWiYSqIjUn+OBlwjcyKqSOUae5uJWxMNWXWxVNxIQTLL6+S9kU98OvB/WWtcVPEUYYTOIVzCOAKGnAHTWgBgzE8wyu8edJ78d69j0VryStmjuEPvM8fDWaOOw==</latexit>

0
1
2

0, 2, 4

0, 2, 4, 6
X

n
<latexit sha1_base64="IqW2N36QktBwntGQavLhE1DLrrE=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/XEYzy</latexit><latexit sha1_base64="IqW2N36QktBwntGQavLhE1DLrrE=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/XEYzy</latexit><latexit sha1_base64="IqW2N36QktBwntGQavLhE1DLrrE=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/XEYzy</latexit><latexit sha1_base64="IqW2N36QktBwntGQavLhE1DLrrE=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/XEYzy</latexit>

<̀latexit sha1_base64="NiCNFQINCFG5T4iOY+JPxVaf5XA=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fs7gnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelAhurO9/e6W19Y3NrfJ2ZWd3b/+genjUNnGqGbZYLGLdiahBwRW2LLcCO4lGKiOBj9HkNvcfn1AbHqsHO00wlHSk+JAzanOph0L0qzW/7s9BVklQkBoUaParX71BzFKJyjJBjekGfmLDjGrLmcBZpZcaTCib0BF2HVVUogmz+a0zcuaUARnG2pWyZK7+nsioNGYqI9cpqR2bZS8X//O6qR1ehxlXSWpRscWiYSqIjUn+OBlwjcyKqSOUae5uJWxMNWXWxVNxIQTLL6+S9kU98OvB/WWtcVPEUYYTOIVzCOAKGnAHTWgBgzE8wyu8edJ78d69j0VryStmjuEPvM8fDWaOOw==</latexit><latexit sha1_base64="NiCNFQINCFG5T4iOY+JPxVaf5XA=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fs7gnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelAhurO9/e6W19Y3NrfJ2ZWd3b/+genjUNnGqGbZYLGLdiahBwRW2LLcCO4lGKiOBj9HkNvcfn1AbHqsHO00wlHSk+JAzanOph0L0qzW/7s9BVklQkBoUaParX71BzFKJyjJBjekGfmLDjGrLmcBZpZcaTCib0BF2HVVUogmz+a0zcuaUARnG2pWyZK7+nsioNGYqI9cpqR2bZS8X//O6qR1ehxlXSWpRscWiYSqIjUn+OBlwjcyKqSOUae5uJWxMNWXWxVNxIQTLL6+S9kU98OvB/WWtcVPEUYYTOIVzCOAKGnAHTWgBgzE8wyu8edJ78d69j0VryStmjuEPvM8fDWaOOw==</latexit><latexit sha1_base64="NiCNFQINCFG5T4iOY+JPxVaf5XA=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fs7gnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelAhurO9/e6W19Y3NrfJ2ZWd3b/+genjUNnGqGbZYLGLdiahBwRW2LLcCO4lGKiOBj9HkNvcfn1AbHqsHO00wlHSk+JAzanOph0L0qzW/7s9BVklQkBoUaParX71BzFKJyjJBjekGfmLDjGrLmcBZpZcaTCib0BF2HVVUogmz+a0zcuaUARnG2pWyZK7+nsioNGYqI9cpqR2bZS8X//O6qR1ehxlXSWpRscWiYSqIjUn+OBlwjcyKqSOUae5uJWxMNWXWxVNxIQTLL6+S9kU98OvB/WWtcVPEUYYTOIVzCOAKGnAHTWgBgzE8wyu8edJ78d69j0VryStmjuEPvM8fDWaOOw==</latexit><latexit sha1_base64="NiCNFQINCFG5T4iOY+JPxVaf5XA=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fs7gnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelAhurO9/e6W19Y3NrfJ2ZWd3b/+genjUNnGqGbZYLGLdiahBwRW2LLcCO4lGKiOBj9HkNvcfn1AbHqsHO00wlHSk+JAzanOph0L0qzW/7s9BVklQkBoUaParX71BzFKJyjJBjekGfmLDjGrLmcBZpZcaTCib0BF2HVVUogmz+a0zcuaUARnG2pWyZK7+nsioNGYqI9cpqR2bZS8X//O6qR1ehxlXSWpRscWiYSqIjUn+OBlwjcyKqSOUae5uJWxMNWXWxVNxIQTLL6+S9kU98OvB/WWtcVPEUYYTOIVzCOAKGnAHTWgBgzE8wyu8edJ78d69j0VryStmjuEPvM8fDWaOOw==</latexit>

0
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bisector

parity rule:     odd            odd 
                      even            even 

n
<latexit sha1_base64="IqW2N36QktBwntGQavLhE1DLrrE=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/XEYzy</latexit><latexit sha1_base64="IqW2N36QktBwntGQavLhE1DLrrE=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/XEYzy</latexit><latexit sha1_base64="IqW2N36QktBwntGQavLhE1DLrrE=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/XEYzy</latexit><latexit sha1_base64="hP+6LrUf2d3tZaldqaQQvEKMXyw=">AAAB2XicbZDNSgMxFIXv1L86Vq1rN8EiuCozbnQpuHFZwbZCO5RM5k4bmskMyR2hDH0BF25EfC93vo3pz0JbDwQ+zknIvSculLQUBN9ebWd3b/+gfugfNfzjk9Nmo2fz0gjsilzl5jnmFpXU2CVJCp8LgzyLFfbj6f0i77+gsTLXTzQrMMr4WMtUCk7O6oyaraAdLMW2IVxDC9YaNb+GSS7KDDUJxa0dhEFBUcUNSaFw7g9LiwUXUz7GgUPNM7RRtRxzzi6dk7A0N+5oYkv394uKZ9bOstjdzDhN7Ga2MP/LBiWlt1EldVESarH6KC0Vo5wtdmaJNChIzRxwYaSblYkJN1yQa8Z3HYSbG29D77odBu3wMYA6nMMFXEEIN3AHD9CBLghI4BXevYn35n2suqp569LO4I+8zx84xIo4</latexit><latexit sha1_base64="NtnmDLJ1NgRz18QxoCqIYjLd6rc=">AAAB3XicbZBLSwMxFIXv+Ky1anXrJlgEV2XGjS4FNy5bsA9oh5JJ77SxmcyQ3BHK0F/gxoUi/i13/hvTx0JbDwQ+zknIvSfKlLTk+9/e1vbO7t5+6aB8WDk6PqmeVto2zY3AlkhVaroRt6ikxhZJUtjNDPIkUtiJJvfzvPOMxspUP9I0wzDhIy1jKTg5q6kH1Zpf9xdimxCsoAYrNQbVr/4wFXmCmoTi1vYCP6Ow4IakUDgr93OLGRcTPsKeQ80TtGGxGHTGLp0zZHFq3NHEFu7vFwVPrJ0mkbuZcBrb9Wxu/pf1copvw0LqLCfUYvlRnCtGKZtvzYbSoCA1dcCFkW5WJsbccEGum7IrIVhfeRPa1/XArwdNH0pwDhdwBQHcwB08QANaIADhBd7g3XvyXr2PZV1b3qq3M/gj7/MHwtmLnw==</latexit><latexit sha1_base64="NtnmDLJ1NgRz18QxoCqIYjLd6rc=">AAAB3XicbZBLSwMxFIXv+Ky1anXrJlgEV2XGjS4FNy5bsA9oh5JJ77SxmcyQ3BHK0F/gxoUi/i13/hvTx0JbDwQ+zknIvSfKlLTk+9/e1vbO7t5+6aB8WDk6PqmeVto2zY3AlkhVaroRt6ikxhZJUtjNDPIkUtiJJvfzvPOMxspUP9I0wzDhIy1jKTg5q6kH1Zpf9xdimxCsoAYrNQbVr/4wFXmCmoTi1vYCP6Ow4IakUDgr93OLGRcTPsKeQ80TtGGxGHTGLp0zZHFq3NHEFu7vFwVPrJ0mkbuZcBrb9Wxu/pf1copvw0LqLCfUYvlRnCtGKZtvzYbSoCA1dcCFkW5WJsbccEGum7IrIVhfeRPa1/XArwdNH0pwDhdwBQHcwB08QANaIADhBd7g3XvyXr2PZV1b3qq3M/gj7/MHwtmLnw==</latexit><latexit sha1_base64="ck1/v/JpOJELH0iIdgPbhaWErXY=">AAAB6HicbVBNT8JAEJ3iF+IX6tHLRmLiibRe9Ej04hESCyTQkO0yhZXtttndmpCGX+DFg8Z49Sd589+4QA8KvmSSl/dmMjMvTAXXxnW/ndLG5tb2Tnm3srd/cHhUPT5p6yRTDH2WiER1Q6pRcIm+4UZgN1VI41BgJ5zczf3OEyrNE/lgpikGMR1JHnFGjZVaclCtuXV3AbJOvILUoEBzUP3qDxOWxSgNE1TrnuemJsipMpwJnFX6mcaUsgkdYc9SSWPUQb44dEYurDIkUaJsSUMW6u+JnMZaT+PQdsbUjPWqNxf/83qZiW6CnMs0MyjZclGUCWISMv+aDLlCZsTUEsoUt7cSNqaKMmOzqdgQvNWX10n7qu65da/l1hq3RRxlOINzuAQPrqEB99AEHxggPMMrvDmPzovz7nwsW0tOMXMKf+B8/gDV0Yzu</latexit><latexit sha1_base64="IqW2N36QktBwntGQavLhE1DLrrE=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/XEYzy</latexit><latexit sha1_base64="IqW2N36QktBwntGQavLhE1DLrrE=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/XEYzy</latexit><latexit sha1_base64="IqW2N36QktBwntGQavLhE1DLrrE=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/XEYzy</latexit><latexit sha1_base64="IqW2N36QktBwntGQavLhE1DLrrE=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/XEYzy</latexit><latexit sha1_base64="IqW2N36QktBwntGQavLhE1DLrrE=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/XEYzy</latexit><latexit sha1_base64="IqW2N36QktBwntGQavLhE1DLrrE=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/XEYzy</latexit>

<̀latexit sha1_base64="NiCNFQINCFG5T4iOY+JPxVaf5XA=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fs7gnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelAhurO9/e6W19Y3NrfJ2ZWd3b/+genjUNnGqGbZYLGLdiahBwRW2LLcCO4lGKiOBj9HkNvcfn1AbHqsHO00wlHSk+JAzanOph0L0qzW/7s9BVklQkBoUaParX71BzFKJyjJBjekGfmLDjGrLmcBZpZcaTCib0BF2HVVUogmz+a0zcuaUARnG2pWyZK7+nsioNGYqI9cpqR2bZS8X//O6qR1ehxlXSWpRscWiYSqIjUn+OBlwjcyKqSOUae5uJWxMNWXWxVNxIQTLL6+S9kU98OvB/WWtcVPEUYYTOIVzCOAKGnAHTWgBgzE8wyu8edJ78d69j0VryStmjuEPvM8fDWaOOw==</latexit><latexit sha1_base64="NiCNFQINCFG5T4iOY+JPxVaf5XA=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fs7gnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelAhurO9/e6W19Y3NrfJ2ZWd3b/+genjUNnGqGbZYLGLdiahBwRW2LLcCO4lGKiOBj9HkNvcfn1AbHqsHO00wlHSk+JAzanOph0L0qzW/7s9BVklQkBoUaParX71BzFKJyjJBjekGfmLDjGrLmcBZpZcaTCib0BF2HVVUogmz+a0zcuaUARnG2pWyZK7+nsioNGYqI9cpqR2bZS8X//O6qR1ehxlXSWpRscWiYSqIjUn+OBlwjcyKqSOUae5uJWxMNWXWxVNxIQTLL6+S9kU98OvB/WWtcVPEUYYTOIVzCOAKGnAHTWgBgzE8wyu8edJ78d69j0VryStmjuEPvM8fDWaOOw==</latexit><latexit sha1_base64="NiCNFQINCFG5T4iOY+JPxVaf5XA=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fs7gnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelAhurO9/e6W19Y3NrfJ2ZWd3b/+genjUNnGqGbZYLGLdiahBwRW2LLcCO4lGKiOBj9HkNvcfn1AbHqsHO00wlHSk+JAzanOph0L0qzW/7s9BVklQkBoUaParX71BzFKJyjJBjekGfmLDjGrLmcBZpZcaTCib0BF2HVVUogmz+a0zcuaUARnG2pWyZK7+nsioNGYqI9cpqR2bZS8X//O6qR1ehxlXSWpRscWiYSqIjUn+OBlwjcyKqSOUae5uJWxMNWXWxVNxIQTLL6+S9kU98OvB/WWtcVPEUYYTOIVzCOAKGnAHTWgBgzE8wyu8edJ78d69j0VryStmjuEPvM8fDWaOOw==</latexit><latexit sha1_base64="NiCNFQINCFG5T4iOY+JPxVaf5XA=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fs7gnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelAhurO9/e6W19Y3NrfJ2ZWd3b/+genjUNnGqGbZYLGLdiahBwRW2LLcCO4lGKiOBj9HkNvcfn1AbHqsHO00wlHSk+JAzanOph0L0qzW/7s9BVklQkBoUaParX71BzFKJyjJBjekGfmLDjGrLmcBZpZcaTCib0BF2HVVUogmz+a0zcuaUARnG2pWyZK7+nsioNGYqI9cpqR2bZS8X//O6qR1ehxlXSWpRscWiYSqIjUn+OBlwjcyKqSOUae5uJWxMNWXWxVNxIQTLL6+S9kU98OvB/WWtcVPEUYYTOIVzCOAKGnAHTWgBgzE8wyu8edJ78d69j0VryStmjuEPvM8fDWaOOw==</latexit>

)
<latexit sha1_base64="E+ql3SgwjIInsFzh7/ZNPWlwHRk=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LHoxWMVWwtpKJvtpl262Q27E6WE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvSgU36HnfTmlldW19o7xZ2dre2d2r7h+0jco0ZS2qhNKdiBgmuGQt5ChYJ9WMJJFgD9Hoeuo/PDJtuJL3OE5ZmJCB5DGnBK0UdO/4YIhEa/XUq9a8ujeDu0z8gtSgQLNX/er2Fc0SJpEKYkzgeymGOdHIqWCTSjczLCV0RAYssFSShJkwn508cU+s0ndjpW1JdGfq74mcJMaMk8h2JgSHZtGbiv95QYbxZZhzmWbIJJ0vijPhonKn/7t9rhlFMbaEUM3trS4dEk0o2pQqNgR/8eVl0j6r+17dvz2vNa6KOMpwBMdwCj5cQANuoAktoKDgGV7hzUHnxXl3PuatJaeYOYQ/cD5/AJEbkW0=</latexit><latexit sha1_base64="E+ql3SgwjIInsFzh7/ZNPWlwHRk=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LHoxWMVWwtpKJvtpl262Q27E6WE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvSgU36HnfTmlldW19o7xZ2dre2d2r7h+0jco0ZS2qhNKdiBgmuGQt5ChYJ9WMJJFgD9Hoeuo/PDJtuJL3OE5ZmJCB5DGnBK0UdO/4YIhEa/XUq9a8ujeDu0z8gtSgQLNX/er2Fc0SJpEKYkzgeymGOdHIqWCTSjczLCV0RAYssFSShJkwn508cU+s0ndjpW1JdGfq74mcJMaMk8h2JgSHZtGbiv95QYbxZZhzmWbIJJ0vijPhonKn/7t9rhlFMbaEUM3trS4dEk0o2pQqNgR/8eVl0j6r+17dvz2vNa6KOMpwBMdwCj5cQANuoAktoKDgGV7hzUHnxXl3PuatJaeYOYQ/cD5/AJEbkW0=</latexit><latexit sha1_base64="E+ql3SgwjIInsFzh7/ZNPWlwHRk=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LHoxWMVWwtpKJvtpl262Q27E6WE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvSgU36HnfTmlldW19o7xZ2dre2d2r7h+0jco0ZS2qhNKdiBgmuGQt5ChYJ9WMJJFgD9Hoeuo/PDJtuJL3OE5ZmJCB5DGnBK0UdO/4YIhEa/XUq9a8ujeDu0z8gtSgQLNX/er2Fc0SJpEKYkzgeymGOdHIqWCTSjczLCV0RAYssFSShJkwn508cU+s0ndjpW1JdGfq74mcJMaMk8h2JgSHZtGbiv95QYbxZZhzmWbIJJ0vijPhonKn/7t9rhlFMbaEUM3trS4dEk0o2pQqNgR/8eVl0j6r+17dvz2vNa6KOMpwBMdwCj5cQANuoAktoKDgGV7hzUHnxXl3PuatJaeYOYQ/cD5/AJEbkW0=</latexit><latexit sha1_base64="E+ql3SgwjIInsFzh7/ZNPWlwHRk=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LHoxWMVWwtpKJvtpl262Q27E6WE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvSgU36HnfTmlldW19o7xZ2dre2d2r7h+0jco0ZS2qhNKdiBgmuGQt5ChYJ9WMJJFgD9Hoeuo/PDJtuJL3OE5ZmJCB5DGnBK0UdO/4YIhEa/XUq9a8ujeDu0z8gtSgQLNX/er2Fc0SJpEKYkzgeymGOdHIqWCTSjczLCV0RAYssFSShJkwn508cU+s0ndjpW1JdGfq74mcJMaMk8h2JgSHZtGbiv95QYbxZZhzmWbIJJ0vijPhonKn/7t9rhlFMbaEUM3trS4dEk0o2pQqNgR/8eVl0j6r+17dvz2vNa6KOMpwBMdwCj5cQANuoAktoKDgGV7hzUHnxXl3PuatJaeYOYQ/cD5/AJEbkW0=</latexit>

n
<latexit sha1_base64="IqW2N36QktBwntGQavLhE1DLrrE=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/XEYzy</latexit><latexit sha1_base64="IqW2N36QktBwntGQavLhE1DLrrE=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/XEYzy</latexit><latexit sha1_base64="IqW2N36QktBwntGQavLhE1DLrrE=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/XEYzy</latexit><latexit sha1_base64="hP+6LrUf2d3tZaldqaQQvEKMXyw=">AAAB2XicbZDNSgMxFIXv1L86Vq1rN8EiuCozbnQpuHFZwbZCO5RM5k4bmskMyR2hDH0BF25EfC93vo3pz0JbDwQ+zknIvSculLQUBN9ebWd3b/+gfugfNfzjk9Nmo2fz0gjsilzl5jnmFpXU2CVJCp8LgzyLFfbj6f0i77+gsTLXTzQrMMr4WMtUCk7O6oyaraAdLMW2IVxDC9YaNb+GSS7KDDUJxa0dhEFBUcUNSaFw7g9LiwUXUz7GgUPNM7RRtRxzzi6dk7A0N+5oYkv394uKZ9bOstjdzDhN7Ga2MP/LBiWlt1EldVESarH6KC0Vo5wtdmaJNChIzRxwYaSblYkJN1yQa8Z3HYSbG29D77odBu3wMYA6nMMFXEEIN3AHD9CBLghI4BXevYn35n2suqp569LO4I+8zx84xIo4</latexit><latexit sha1_base64="NtnmDLJ1NgRz18QxoCqIYjLd6rc=">AAAB3XicbZBLSwMxFIXv+Ky1anXrJlgEV2XGjS4FNy5bsA9oh5JJ77SxmcyQ3BHK0F/gxoUi/i13/hvTx0JbDwQ+zknIvSfKlLTk+9/e1vbO7t5+6aB8WDk6PqmeVto2zY3AlkhVaroRt6ikxhZJUtjNDPIkUtiJJvfzvPOMxspUP9I0wzDhIy1jKTg5q6kH1Zpf9xdimxCsoAYrNQbVr/4wFXmCmoTi1vYCP6Ow4IakUDgr93OLGRcTPsKeQ80TtGGxGHTGLp0zZHFq3NHEFu7vFwVPrJ0mkbuZcBrb9Wxu/pf1copvw0LqLCfUYvlRnCtGKZtvzYbSoCA1dcCFkW5WJsbccEGum7IrIVhfeRPa1/XArwdNH0pwDhdwBQHcwB08QANaIADhBd7g3XvyXr2PZV1b3qq3M/gj7/MHwtmLnw==</latexit><latexit sha1_base64="NtnmDLJ1NgRz18QxoCqIYjLd6rc=">AAAB3XicbZBLSwMxFIXv+Ky1anXrJlgEV2XGjS4FNy5bsA9oh5JJ77SxmcyQ3BHK0F/gxoUi/i13/hvTx0JbDwQ+zknIvSfKlLTk+9/e1vbO7t5+6aB8WDk6PqmeVto2zY3AlkhVaroRt6ikxhZJUtjNDPIkUtiJJvfzvPOMxspUP9I0wzDhIy1jKTg5q6kH1Zpf9xdimxCsoAYrNQbVr/4wFXmCmoTi1vYCP6Ow4IakUDgr93OLGRcTPsKeQ80TtGGxGHTGLp0zZHFq3NHEFu7vFwVPrJ0mkbuZcBrb9Wxu/pf1copvw0LqLCfUYvlRnCtGKZtvzYbSoCA1dcCFkW5WJsbccEGum7IrIVhfeRPa1/XArwdNH0pwDhdwBQHcwB08QANaIADhBd7g3XvyXr2PZV1b3qq3M/gj7/MHwtmLnw==</latexit><latexit sha1_base64="ck1/v/JpOJELH0iIdgPbhaWErXY=">AAAB6HicbVBNT8JAEJ3iF+IX6tHLRmLiibRe9Ej04hESCyTQkO0yhZXtttndmpCGX+DFg8Z49Sd589+4QA8KvmSSl/dmMjMvTAXXxnW/ndLG5tb2Tnm3srd/cHhUPT5p6yRTDH2WiER1Q6pRcIm+4UZgN1VI41BgJ5zczf3OEyrNE/lgpikGMR1JHnFGjZVaclCtuXV3AbJOvILUoEBzUP3qDxOWxSgNE1TrnuemJsipMpwJnFX6mcaUsgkdYc9SSWPUQb44dEYurDIkUaJsSUMW6u+JnMZaT+PQdsbUjPWqNxf/83qZiW6CnMs0MyjZclGUCWISMv+aDLlCZsTUEsoUt7cSNqaKMmOzqdgQvNWX10n7qu65da/l1hq3RRxlOINzuAQPrqEB99AEHxggPMMrvDmPzovz7nwsW0tOMXMKf+B8/gDV0Yzu</latexit><latexit sha1_base64="IqW2N36QktBwntGQavLhE1DLrrE=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/XEYzy</latexit><latexit sha1_base64="IqW2N36QktBwntGQavLhE1DLrrE=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/XEYzy</latexit><latexit sha1_base64="IqW2N36QktBwntGQavLhE1DLrrE=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/XEYzy</latexit><latexit sha1_base64="IqW2N36QktBwntGQavLhE1DLrrE=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/XEYzy</latexit><latexit sha1_base64="IqW2N36QktBwntGQavLhE1DLrrE=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/XEYzy</latexit><latexit sha1_base64="IqW2N36QktBwntGQavLhE1DLrrE=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/XEYzy</latexit> )

<latexit sha1_base64="E+ql3SgwjIInsFzh7/ZNPWlwHRk=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LHoxWMVWwtpKJvtpl262Q27E6WE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvSgU36HnfTmlldW19o7xZ2dre2d2r7h+0jco0ZS2qhNKdiBgmuGQt5ChYJ9WMJJFgD9Hoeuo/PDJtuJL3OE5ZmJCB5DGnBK0UdO/4YIhEa/XUq9a8ujeDu0z8gtSgQLNX/er2Fc0SJpEKYkzgeymGOdHIqWCTSjczLCV0RAYssFSShJkwn508cU+s0ndjpW1JdGfq74mcJMaMk8h2JgSHZtGbiv95QYbxZZhzmWbIJJ0vijPhonKn/7t9rhlFMbaEUM3trS4dEk0o2pQqNgR/8eVl0j6r+17dvz2vNa6KOMpwBMdwCj5cQANuoAktoKDgGV7hzUHnxXl3PuatJaeYOYQ/cD5/AJEbkW0=</latexit><latexit sha1_base64="E+ql3SgwjIInsFzh7/ZNPWlwHRk=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LHoxWMVWwtpKJvtpl262Q27E6WE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvSgU36HnfTmlldW19o7xZ2dre2d2r7h+0jco0ZS2qhNKdiBgmuGQt5ChYJ9WMJJFgD9Hoeuo/PDJtuJL3OE5ZmJCB5DGnBK0UdO/4YIhEa/XUq9a8ujeDu0z8gtSgQLNX/er2Fc0SJpEKYkzgeymGOdHIqWCTSjczLCV0RAYssFSShJkwn508cU+s0ndjpW1JdGfq74mcJMaMk8h2JgSHZtGbiv95QYbxZZhzmWbIJJ0vijPhonKn/7t9rhlFMbaEUM3trS4dEk0o2pQqNgR/8eVl0j6r+17dvz2vNa6KOMpwBMdwCj5cQANuoAktoKDgGV7hzUHnxXl3PuatJaeYOYQ/cD5/AJEbkW0=</latexit><latexit sha1_base64="E+ql3SgwjIInsFzh7/ZNPWlwHRk=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LHoxWMVWwtpKJvtpl262Q27E6WE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvSgU36HnfTmlldW19o7xZ2dre2d2r7h+0jco0ZS2qhNKdiBgmuGQt5ChYJ9WMJJFgD9Hoeuo/PDJtuJL3OE5ZmJCB5DGnBK0UdO/4YIhEa/XUq9a8ujeDu0z8gtSgQLNX/er2Fc0SJpEKYkzgeymGOdHIqWCTSjczLCV0RAYssFSShJkwn508cU+s0ndjpW1JdGfq74mcJMaMk8h2JgSHZtGbiv95QYbxZZhzmWbIJJ0vijPhonKn/7t9rhlFMbaEUM3trS4dEk0o2pQqNgR/8eVl0j6r+17dvz2vNa6KOMpwBMdwCj5cQANuoAktoKDgGV7hzUHnxXl3PuatJaeYOYQ/cD5/AJEbkW0=</latexit><latexit sha1_base64="E+ql3SgwjIInsFzh7/ZNPWlwHRk=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LHoxWMVWwtpKJvtpl262Q27E6WE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvSgU36HnfTmlldW19o7xZ2dre2d2r7h+0jco0ZS2qhNKdiBgmuGQt5ChYJ9WMJJFgD9Hoeuo/PDJtuJL3OE5ZmJCB5DGnBK0UdO/4YIhEa/XUq9a8ujeDu0z8gtSgQLNX/er2Fc0SJpEKYkzgeymGOdHIqWCTSjczLCV0RAYssFSShJkwn508cU+s0ndjpW1JdGfq74mcJMaMk8h2JgSHZtGbiv95QYbxZZhzmWbIJJ0vijPhonKn/7t9rhlFMbaEUM3trS4dEk0o2pQqNgR/8eVl0j6r+17dvz2vNa6KOMpwBMdwCj5cQANuoAktoKDgGV7hzUHnxXl3PuatJaeYOYQ/cD5/AJEbkW0=</latexit>

<̀latexit sha1_base64="NiCNFQINCFG5T4iOY+JPxVaf5XA=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fs7gnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelAhurO9/e6W19Y3NrfJ2ZWd3b/+genjUNnGqGbZYLGLdiahBwRW2LLcCO4lGKiOBj9HkNvcfn1AbHqsHO00wlHSk+JAzanOph0L0qzW/7s9BVklQkBoUaParX71BzFKJyjJBjekGfmLDjGrLmcBZpZcaTCib0BF2HVVUogmz+a0zcuaUARnG2pWyZK7+nsioNGYqI9cpqR2bZS8X//O6qR1ehxlXSWpRscWiYSqIjUn+OBlwjcyKqSOUae5uJWxMNWXWxVNxIQTLL6+S9kU98OvB/WWtcVPEUYYTOIVzCOAKGnAHTWgBgzE8wyu8edJ78d69j0VryStmjuEPvM8fDWaOOw==</latexit><latexit sha1_base64="NiCNFQINCFG5T4iOY+JPxVaf5XA=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fs7gnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelAhurO9/e6W19Y3NrfJ2ZWd3b/+genjUNnGqGbZYLGLdiahBwRW2LLcCO4lGKiOBj9HkNvcfn1AbHqsHO00wlHSk+JAzanOph0L0qzW/7s9BVklQkBoUaParX71BzFKJyjJBjekGfmLDjGrLmcBZpZcaTCib0BF2HVVUogmz+a0zcuaUARnG2pWyZK7+nsioNGYqI9cpqR2bZS8X//O6qR1ehxlXSWpRscWiYSqIjUn+OBlwjcyKqSOUae5uJWxMNWXWxVNxIQTLL6+S9kU98OvB/WWtcVPEUYYTOIVzCOAKGnAHTWgBgzE8wyu8edJ78d69j0VryStmjuEPvM8fDWaOOw==</latexit><latexit sha1_base64="NiCNFQINCFG5T4iOY+JPxVaf5XA=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fs7gnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelAhurO9/e6W19Y3NrfJ2ZWd3b/+genjUNnGqGbZYLGLdiahBwRW2LLcCO4lGKiOBj9HkNvcfn1AbHqsHO00wlHSk+JAzanOph0L0qzW/7s9BVklQkBoUaParX71BzFKJyjJBjekGfmLDjGrLmcBZpZcaTCib0BF2HVVUogmz+a0zcuaUARnG2pWyZK7+nsioNGYqI9cpqR2bZS8X//O6qR1ehxlXSWpRscWiYSqIjUn+OBlwjcyKqSOUae5uJWxMNWXWxVNxIQTLL6+S9kU98OvB/WWtcVPEUYYTOIVzCOAKGnAHTWgBgzE8wyu8edJ78d69j0VryStmjuEPvM8fDWaOOw==</latexit><latexit sha1_base64="NiCNFQINCFG5T4iOY+JPxVaf5XA=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fs7gnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelAhurO9/e6W19Y3NrfJ2ZWd3b/+genjUNnGqGbZYLGLdiahBwRW2LLcCO4lGKiOBj9HkNvcfn1AbHqsHO00wlHSk+JAzanOph0L0qzW/7s9BVklQkBoUaParX71BzFKJyjJBjekGfmLDjGrLmcBZpZcaTCib0BF2HVVUogmz+a0zcuaUARnG2pWyZK7+nsioNGYqI9cpqR2bZS8X//O6qR1ehxlXSWpRscWiYSqIjUn+OBlwjcyKqSOUae5uJWxMNWXWxVNxIQTLL6+S9kU98OvB/WWtcVPEUYYTOIVzCOAKGnAHTWgBgzE8wyu8edJ78d69j0VryStmjuEPvM8fDWaOOw==</latexit>

natural extension of  
plane parallel limit 

(`max = n+ 2, n > 0)
<latexit sha1_base64="MKpj6t43KqlXlo+XrlQjS/YPrdQ=">AAACBnicbVDLSsNAFJ3UV62vqEsRBotQUUpSBN0oRTcuK9gHNCFMppN26GQSZiZiCV258VfcuFDErd/gzr9xmmahrYd74XDOvczc48eMSmVZ30ZhYXFpeaW4Wlpb39jcMrd3WjJKBCZNHLFIdHwkCaOcNBVVjHRiQVDoM9L2h9cTv31PhKQRv1OjmLgh6nMaUIyUljxzv+IQxrw0RA9jeAH5ce0EOlnxS+vIM8tW1coA54mdkzLI0fDML6cX4SQkXGGGpOzaVqzcFAlFMSPjkpNIEiM8RH3S1ZSjkEg3zc4Yw0Ot9GAQCd1cwUz9vZGiUMpR6OvJEKmBnPUm4n9eN1HBuZtSHieKcDx9KEgYVBGcZAJ7VBCs2EgThAXVf4V4gATCSidX0iHYsyfPk1ataltV+/a0XL/K4yiCPXAAKsAGZ6AObkADNAEGj+AZvII348l4Md6Nj+lowch3dsEfGJ8/xQiWFA==</latexit><latexit sha1_base64="MKpj6t43KqlXlo+XrlQjS/YPrdQ=">AAACBnicbVDLSsNAFJ3UV62vqEsRBotQUUpSBN0oRTcuK9gHNCFMppN26GQSZiZiCV258VfcuFDErd/gzr9xmmahrYd74XDOvczc48eMSmVZ30ZhYXFpeaW4Wlpb39jcMrd3WjJKBCZNHLFIdHwkCaOcNBVVjHRiQVDoM9L2h9cTv31PhKQRv1OjmLgh6nMaUIyUljxzv+IQxrw0RA9jeAH5ce0EOlnxS+vIM8tW1coA54mdkzLI0fDML6cX4SQkXGGGpOzaVqzcFAlFMSPjkpNIEiM8RH3S1ZSjkEg3zc4Yw0Ot9GAQCd1cwUz9vZGiUMpR6OvJEKmBnPUm4n9eN1HBuZtSHieKcDx9KEgYVBGcZAJ7VBCs2EgThAXVf4V4gATCSidX0iHYsyfPk1ataltV+/a0XL/K4yiCPXAAKsAGZ6AObkADNAEGj+AZvII348l4Md6Nj+lowch3dsEfGJ8/xQiWFA==</latexit><latexit sha1_base64="MKpj6t43KqlXlo+XrlQjS/YPrdQ=">AAACBnicbVDLSsNAFJ3UV62vqEsRBotQUUpSBN0oRTcuK9gHNCFMppN26GQSZiZiCV258VfcuFDErd/gzr9xmmahrYd74XDOvczc48eMSmVZ30ZhYXFpeaW4Wlpb39jcMrd3WjJKBCZNHLFIdHwkCaOcNBVVjHRiQVDoM9L2h9cTv31PhKQRv1OjmLgh6nMaUIyUljxzv+IQxrw0RA9jeAH5ce0EOlnxS+vIM8tW1coA54mdkzLI0fDML6cX4SQkXGGGpOzaVqzcFAlFMSPjkpNIEiM8RH3S1ZSjkEg3zc4Yw0Ot9GAQCd1cwUz9vZGiUMpR6OvJEKmBnPUm4n9eN1HBuZtSHieKcDx9KEgYVBGcZAJ7VBCs2EgThAXVf4V4gATCSidX0iHYsyfPk1ataltV+/a0XL/K4yiCPXAAKsAGZ6AObkADNAEGj+AZvII348l4Md6Nj+lowch3dsEfGJ8/xQiWFA==</latexit><latexit sha1_base64="MKpj6t43KqlXlo+XrlQjS/YPrdQ=">AAACBnicbVDLSsNAFJ3UV62vqEsRBotQUUpSBN0oRTcuK9gHNCFMppN26GQSZiZiCV258VfcuFDErd/gzr9xmmahrYd74XDOvczc48eMSmVZ30ZhYXFpeaW4Wlpb39jcMrd3WjJKBCZNHLFIdHwkCaOcNBVVjHRiQVDoM9L2h9cTv31PhKQRv1OjmLgh6nMaUIyUljxzv+IQxrw0RA9jeAH5ce0EOlnxS+vIM8tW1coA54mdkzLI0fDML6cX4SQkXGGGpOzaVqzcFAlFMSPjkpNIEiM8RH3S1ZSjkEg3zc4Yw0Ot9GAQCd1cwUz9vZGiUMpR6OvJEKmBnPUm4n9eN1HBuZtSHieKcDx9KEgYVBGcZAJ7VBCs2EgThAXVf4V4gATCSidX0iHYsyfPk1ataltV+/a0XL/K4yiCPXAAKsAGZ6AObkADNAEGj+AZvII348l4Md6Nj+lowch3dsEfGJ8/xQiWFA==</latexit>

(full Fourier coefficients are proportional to those in mixed space)
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r1

r2

r

θ

ϕ__
2

d

(1− ν2)
r21 + r22

r2
4
3
[1− P2(µ)] +

( r
d

)2
[
−
1
5
+

3
7
P2(µ)−

8
35

P4(µ)

]

ν

(
r1
r2

+
r2
r1

)
2 +

( r
d

)2
[
−
1
3
+

4
3
P2(µ)

]

(1− ν2)2
r21r

2
2

r4

[
8
15

−
16
21

P2(µ) +
8
35

P4(µ)

]
+

( r
d

)2
[
−

4
15

+
8
21

P2(µ)−
4
35

P4(µ)

]

ν(1− ν2)
r1r2
r2

(1− µ2) +
( r
d

)2
[
−
13
30

+
23
42

P2(µ)−
4
35

P4(µ)

]

14ν2
− 6 8 +

28
3

( r
d

)2

[−1 + P2(µ)]

νr2

r1r2

( r
d

)2

TABLE III Expression of the geometrical coefficients in (4.7) when d and θ are defined according to the bisector parametrization.

n is odd, and in particular that the first order corrections vanish. Furthermore, since only even powers of µ appear
in the series expansions at all orders, the parity of Legendre multipoles implies that only even ℓs appear in the
decomposition (4.9). Finally, we verify from the structure of the terms on Table II with the rules (4.16) that, for a
given even order n in the series expansion, the highest possible power of the angular dependence is µn+4. It follows
that for a given n, the sum in ℓ in Eq. (4.9) does not extend to infinity, but is limited by ℓmax = n+ 4.

4. Angle bisector

If we take d to be the length of the line that bisects the angle φ, v will depend on the sides of the triangle. With the
help of two basic triangle geometry results known as Stewart’s and angle bisector theorems, we relate the variables

r2 =

√
1

1− v
d2 + vr2 + r21

(
1− 1

1− v

)
,

1− v

r1
=

v

r2
, (4.22)

and then determine the geometric factors of Eq. (4.7) in Table III. As for the median parametrization, the first order
corrections vanish identically. The second order corrections are then

I(2)[j0(kr)] =

[
β

(
2

9
P0(µ)−

8

9
P2(µ)

)
− β2

(
2

5
P0(µ) +

4

15
P2(µ)

)]
j0(kr)

+

[
β

(
1

45
P0(µ)−

29

63
P2(µ)−

8

35
P4(µ)

)
− β2

(
13

35
P0(µ) +

29

147
P2(µ) +

24

245
P4(µ)

)]
j2(kr)

+β2

(
− 4

105
P0(µ) +

16

735
P2(µ) +

4

245
P4(µ)

)
j4(µ) + β2 4

3

[
j0(kr)

(kr)2
+

j2(kr)

(kr)2

]
P0(µ) . (4.23)

It follows from (4.23) that the non-vanishing coefficients ξ(2)ℓ (r) are expressed as

ξ(2)0 (r) =

(
2

9
β − 14

15
β2

)
Ξ0
0(r) +

(
1

45
β − 11

45
β2

)
Ξ0
2(r) +

4

3
β2Ξ2

0(r) , (4.24)

ξ(2)2 (r) = −
(
8

9
β +

4

15
β2

)
Ξ0
0(r)−

(
29

63
β +

29

147
β2

)
Ξ0
2(r) −

4

245
β2Ξ0

4(r) , (4.25)

ξ(2)4 (r) = −
(

8

35
β +

24

248
β2

)
Ξ0
2(r) +

4

245
β2Ξ0

4(r) . (4.26)

We observe that in this parametrization only corrections to the monopole, the quadrupole, and the hexadecapole
are introduced. The fact that different multipoles appear in different parametrizations is expected as it is related to
the natural sensitivity to the choice of the origin in multipole expansions. In fact, we can verify also in this case that
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only corrections for n even appear, and that only even multipoles contribute but, for given n, ℓmax = n + 2 in the
expansion (4.9).
To summarize, in configuration space wide angle effects are encoded in corrections linear in r/d if the parametrization

used is not symmetric enough, e.g. for the case v = 0. The largest effect in that case is the dipole correction (ℓ = 1)
which could be used to constrain β. However for a balanced parametrization such as the median or the bisector
parametrizations, the corrections are quadratic in r/d. In all cases, the only integrals on the power spectrum that
need to be performed up to second order are

Ξ0
ℓ(r) =

∫
dkk2

2π2
P(k)jℓ(kr) with ℓ = 0, 2, 4, and Ξ2

0(r) =

∫
dk

2π2r2
P(k)j0(kr) . (4.27)

C. Wide-angle corrections in mixed configuration/Fourier space

In the plane-parallel limit, we have already emphasized in Sec. III.C.4 that the standard results appear in the mixed
configuration/Fourier space and not in the Fourier space. In that case we need to Fourier transform the dependence
in r while keeping the dependence in the average distance d. This leads to define a power spectrum at a distance d.
The dependence on d in the configuration space correlation function (4.9) appears through its norm d and through
the angle µd r = d̂ · r̂. We then find that in the mixed space, the natural perturbative expansion is in powers of 1/(kd)
as

ξ̂z(d,k) ≡
∫

d3r

(2π)3/2
e−ik·rξz(d, r) ≡

∞∑

n=0

1

(kd)n
ξ̂z(n)(k, µkd) (4.28)

with an angular multipoles expansion given by

ξ̂z(n)(k, µkd) ≡
∞∑

ℓ=0

P(n)
ℓ (k)Pℓ(µk d) , P(n)

ℓ (k) =

[√
2

π
(−i)ℓ

∫
r2dr(kr)njℓ(kr)ξ

(n)
ℓ (r)

]
, (4.29)

with µkd = k̂ · d̂. Eq. (4.29) is obtained by expanding the exponential in spherical waves and using the addition
theorem for Legendre polynomials. Given the global rotational invariance, we find that from the apparent six degrees
of freedom of ξ̂z(d,k), only three remain as it depends only on d, k and µkd.
At lowest order, that is considering the term n = 0 in (4.28), we get

ξ̂z(0)(k, µk) =
1

(2π)3/2

{[
1 +

2

3
β +

1

5
β2

]
P0(µkd) +

[
4

3
β +

4

7
β2

]
P2(µkd) + β2 8

35
P4(µkd)

}
P(k)

=
P(k)

(2π)3/2
(1 + βµ2

k d)
2 , (4.30)

thus recovering the plane-parallel result (3.54).
The wide angle corrections can also be computed for each type of parametrization.

• Asymmetric parametrization (v = 0)

The first order correction is

ξ̂z(1)(k, µk d) = − ik

(2π)3/2

∫
p2dpP(p)

{(
4

5
β +

12

35
β2

)
I2 1−1(p, k)P1(µk d) (4.31)

+

[(
4

5
β +

12

35
β2

)
I2 3−2(p, k) +

16

63
β2I4 3−3(p, k)

]
P3(µkd) +

16

63
β2I5 4−4(p, k)P5(µkd)

}
,

where the integrals Ipqn are defined in Appendix F.1 and listed in F.2. After integration by parts we obtain

ξ̂z(1)(k, µkd) =
i

(2π)3/2

[
P(k)

(
64

63
β2P5(µk d) +

(
8

5
β +

88

45
β2

)
P3(µkd) +

(
12

5
β +

36

35
β2

)
P1(µk d)

)

+kP ′(k)

(
−16

63
β2P5(µkd) +

(
−4

5
β − 4

45
β2

)
P3(µkd) +

(
4

5
β +

12

35
β2

)
P1(µk d)

)]
.(4.32)

2

Background analysis. For every distance, this leads to define the associated multipoles δzℓm(r), and since the redshift-
space distortions do not break the statistical isotropy around the observer, the statistics is encoded in the diagonal
part of the multipoles correlations, that is

⟨δzℓm(r1)δ
z
ℓ′m′(r2)⟩ = δℓℓ′δmm′Cz

ℓ (r1, r2). (1.2)

Both the expression found with the configuration space approach in Papai and Szapudi (2008) and the one derived
with a multipole approach in Bonvin and Durrer (2011) are much more complicated than the simple original Kaiser
formula that holds in the plane-parallel limit. In this article, our second goal is to relate both approaches and to link
them with our perturbative expansion around the plane-parallel limit.

II. OVERVIEW OF RESULTS

A. Wide angle effects in configuration space

The structure of the correlation function depends only on the shape of a triangle formed by the observer and
the sources at r1 and r2. The plane-parallel limit corresponds to a squeezed configuration of this triangle where
r = r2 − r1 is much smaller in norm than r1 and r2. In order to expand the correlation functions around this plane-
parallel approximation, it appears more appropriate to consider the correlation functions as depending on r and the
median distance d as illustrated in Fig. 1, with the definitions

ξz(d, r) ≡ Cz(r1, r2) ≡ ⟨δz(r1)δz(r2)⟩ , r ≡ r2 − r1 , d ≡ r1 + r2

2
. (2.1)

In this article we give the general expression for the correlation function in configuration space, checking that we
recover the results of previously existing literature, and we then expand it around its plane-parallel limit so as to
grasp the structure of the wide angle corrections. We also show that instead of using the median position d as an
average position, it is possible to use the bisector to define another type of average position, as it leads to the same
plane-parallel limit.
If the correlation function was statistically homogeneous, then it would depend only on r, and not on d. And if it

was also statistically isotropic, it would actually depend only on one degree of freedom, r. This would be the case if
RSD effects were ignored. However the distorted field is not homogeneous as it also depends on the velocity of the
source with respect to the observer, and not just on the velocity independently. Nevertheless, the global rotational
invariance around the observer removes three degrees of freedom, implying that the correlation function is only a
function of three degrees of freedom which are r, d and µd r ≡ r̂ · d̂. In the plane-parallel limit, it depends on r and
µ, but not on d. It is thus appropriate to expand the general two point correlation function as a general angular
multipole expansion

ξz(d, r) =
∞∑

n=0

( r
d

)n ∞∑

ℓ=0

ξ(n)ℓ (r)Pℓ(µd r) , with µd r ≡ r̂ · d̂ . (2.2)

The ξ(0)ℓ are the lowest order coefficients which arise in the plane-parallel limit, and to be more precise, only ξ(0)0 , ξ(0)2 ,

ξ(0)4 are non-vanishing. The ξ(n>0)
ℓ describe then corrections due to wide angle effects. The natural small parameter

for this expansion is the ratio between the distance between two points being correlated, and their average distance
from the observer, that is r/d. The further the two points are with respect to the observer, the smaller the corrections
are. The geometrical structure at each order is described by the angular variable which depends only on the relative
directions between the difference of positions r and the average direction d, that is it depends only on µ. We find

that the coefficients ξ(n)ℓ in the expansion (2.2) are non-vanishing only if ℓ and n are either both odd or both even.
Furthermore, we show that for the median and the bisector parametrizations of the average distance, these coefficients

do not vanish only if ℓ and n are both even. As a consequence, the first order corrections ξ(1)ℓ vanish, and these choices

should thus be preferred to minimize the wide angle effects. In these cases, we compute explicitly the ξ(n)ℓ up to second
order providing the first set of corrections to the plane-parallel limit.

B. Wide angle effects in Fourier space

In order to understand how such expansion arises in Fourier space, one must first realize that when performing
a double Fourier transformation on a function whose variables are related in a triangular configuration, the Fourier
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where the only non-vanishing coefficients ξ0ℓ (r) of this expansion are directly obtained from Eqs. (3.20), (3.25),
and (3.26) as

ξ(0)0 (r) =

(
1 +

2

3
β +

1

5
β2

)
Ξ0
0(r) , ξ(0)2 (r) = −

(
4

3
β +

4

7
β2

)
Ξ0
2(r) , ξ(0)4 (r) =

8

35
β2Ξ0

4(r) , (3.28)

and with the convenient definition

Ξm
ℓ (r) ≡

∫
k2dk

2π2
(kr)−mjℓ(kr)P(k) . (3.29)

Eq. (3.27) is the Kaiser formula in configuration space (Hamilton, 1992).

C. Redshift-space distortions in Fourier space

1. General expression

In this section, we investigate the Fourier conjugate of the objects given in (3.13) and (3.16). We first note that
for a function of k · r we can relate operators acting on the r dependence to operators acting on the k dependence.
Indeed for scalar functions of k · r,

Or

k2
f(k · r) = Ok

r2
f(k · r) , ∆r

k2
f(k · r) = ∆k

r2
f(k · r) ⇒ L2

r̂f(k · r) = L2
k̂
f(k · r) . (3.30)

Using these results, we find an equivalent expression for Eq. (3.13) which is

δz(r) = (1 + β)δ(r) + β

∫
d3k

(2π)3/2
δ(k)

k2
L2
r̂

r2
(
eik·r

)
= (1 + β)δ(r) + β

∫
d3k

(2π)3/2
δ(k)

(kr)2
L2
k̂

(
eik·r

)
. (3.31)

Once this step has been taken, it is then straightforward to take the Fourier transform to find a relation between the
Fourier components of δz and δ. We obtain

δz(k) = (1 + β)δ(k) + β

∫
d3p

p2
δ(p)L2

p̂

(∫
d3r

(2π)3
ei(p−k)·r

r2

)
. (3.32)

Furthermore, recalling that

∫
d3r

(2π)3
ei(p−k)·r

r2
=

1

4π|k− p| , (3.33)
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where the only non-vanishing coefficients ξ0ℓ (r) of this expansion are directly obtained from Eqs. (3.20), (3.25),
and (3.26) as

ξ(0)0 (r) =

(
1 +

2

3
β +

1

5
β2

)
Ξ0
0(r) , ξ(0)2 (r) = −

(
4

3
β +

4

7
β2

)
Ξ0
2(r) , ξ(0)4 (r) =

8

35
β2Ξ0

4(r) , (3.28)

and with the convenient definition

Ξm
ℓ (r) ≡

∫
k2dk

2π2
(kr)−mjℓ(kr)P(k) . (3.29)

Eq. (3.27) is the Kaiser formula in configuration space (Hamilton, 1992).

C. Redshift-space distortions in Fourier space

1. General expression

In this section, we investigate the Fourier conjugate of the objects given in (3.13) and (3.16). We first note that
for a function of k · r we can relate operators acting on the r dependence to operators acting on the k dependence.
Indeed for scalar functions of k · r,

Or

k2
f(k · r) = Ok

r2
f(k · r) , ∆r

k2
f(k · r) = ∆k

r2
f(k · r) ⇒ L2

r̂f(k · r) = L2
k̂
f(k · r) . (3.30)

Using these results, we find an equivalent expression for Eq. (3.13) which is

δz(r) = (1 + β)δ(r) + β

∫
d3k

(2π)3/2
δ(k)

k2
L2
r̂

r2
(
eik·r

)
= (1 + β)δ(r) + β

∫
d3k

(2π)3/2
δ(k)

(kr)2
L2
k̂

(
eik·r

)
. (3.31)

Once this step has been taken, it is then straightforward to take the Fourier transform to find a relation between the
Fourier components of δz and δ. We obtain

δz(k) = (1 + β)δ(k) + β

∫
d3p

p2
δ(p)L2

p̂

(∫
d3r

(2π)3
ei(p−k)·r

r2

)
. (3.32)

Furthermore, recalling that

∫
d3r

(2π)3
ei(p−k)·r

r2
=

1

4π|k− p| , (3.33)
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where the only non-vanishing coefficients ξ0ℓ (r) of this expansion are directly obtained from Eqs. (3.20), (3.25),
and (3.26) as

ξ(0)0 (r) =

(
1 +

2

3
β +

1

5
β2

)
Ξ0
0(r) , ξ(0)2 (r) = −

(
4

3
β +

4

7
β2

)
Ξ0
2(r) , ξ(0)4 (r) =

8

35
β2Ξ0

4(r) , (3.28)

and with the convenient definition

Ξm
ℓ (r) ≡

∫
k2dk

2π2
(kr)−mjℓ(kr)P(k) . (3.29)

Eq. (3.27) is the Kaiser formula in configuration space (Hamilton, 1992).

C. Redshift-space distortions in Fourier space

1. General expression

In this section, we investigate the Fourier conjugate of the objects given in (3.13) and (3.16). We first note that
for a function of k · r we can relate operators acting on the r dependence to operators acting on the k dependence.
Indeed for scalar functions of k · r,

Or

k2
f(k · r) = Ok

r2
f(k · r) , ∆r

k2
f(k · r) = ∆k

r2
f(k · r) ⇒ L2

r̂f(k · r) = L2
k̂
f(k · r) . (3.30)

Using these results, we find an equivalent expression for Eq. (3.13) which is

δz(r) = (1 + β)δ(r) + β

∫
d3k

(2π)3/2
δ(k)

k2
L2
r̂

r2
(
eik·r

)
= (1 + β)δ(r) + β

∫
d3k

(2π)3/2
δ(k)

(kr)2
L2
k̂

(
eik·r

)
. (3.31)

Once this step has been taken, it is then straightforward to take the Fourier transform to find a relation between the
Fourier components of δz and δ. We obtain

δz(k) = (1 + β)δ(k) + β

∫
d3p

p2
δ(p)L2

p̂

(∫
d3r

(2π)3
ei(p−k)·r

r2

)
. (3.32)

Furthermore, recalling that

∫
d3r

(2π)3
ei(p−k)·r

r2
=

1

4π|k− p| , (3.33)

Order zero (plane parallel):

Second order (first correction to plane parallel):

Configuration space
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Following the same method we are able to find that the second order corrections are

ξ̂z(2)(k, µkd) =
1

(2π)3/2

{
P(k)

[(
−64

35
β − 16

35
β2

)
P4(µkd) +

(
58

21
β +

82

49
β2

)
P2(µk d) +

1

15
β +

3

5
β2

]
(4.37)

+kP ′(k)

[(
8

7
β +

16

35
β2

)
P4(µkd) +

(
−38

21
β − 18

49
β2

)
P2(µkd)−

1

3
β − 3

5
β2

]

+ k2P ′′(k)

[(
− 8

35
β − 4

35
β2

)
P4(µkd) +

(
3

7
β +

5

49
β2

)
P2(µk d)−

1

5
β +

1

15
β2

]}
,

from which the corresponding P(2)
ℓ (k) are easily read.

As we can observe from Sec. F.2, the integrals Ipqn appearing in (4.33), (4.34), and (4.36) are all expressed in terms
of Dirac delta function and its first and second derivatives, except for I40−1(p, k) and I02−1(p, k), which also involve
Heaviside step functions. The numerical coefficients, however, are such that the contributions from the Heaviside step
functions always cancel out.

D. Discussion and Fourier space correlations

We notice that among the coefficients ξ(n)ℓ (r) of the plane-parallel expansion, some are always vanishing. Indeed
they only take non-vanishing values if ℓ and n are either both odd or both even. For instance at lowest order the

non-vanishing coefficients are ξ(0)0 (r), ξ(0)2 (r) and ξ(0)4 (r). At first order in the asymmetric case, the non-vanishing

coefficients are ξ(1)1 (r), ξ(1)3 (r) and ξ(1)5 (r) whereas at second order we have only ξ(2)0 (r), ξ(2)2 (r), ξ(2)4 (r) and ξ(2)6 (r).
In fact, we have shown at the end of Sec. IV.B.3 that if we use the median parametrization the only non-vanishing

coefficients are those for which ℓ and n are both even at all orders. Including second-order corrections would lead to
an expression which is correct up to fourth-order corrections. The number of terms to be included is limited since
ℓ ≤ n + 4. The coefficients in the mixed space follow obviously the same structure since they are related by the
Hankel-type transformation (4.29). The inverse transformation takes the form
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Given that the coefficients in the mixed space are expressed only in terms of the matter power spectrum and its
derivatives, then provided it has nice convergence properties at kd → 0 and kd → ∞, the transformations between
configuration space and mixed space coefficients are in general not worrisome.
However, if we want to build an expansion of the correlation function in the full Fourier space, it is not obvious at

first sight that it is well defined. Indeed, following the logic that the Fourier mode associated with the difference of
points is the average Fourier mode, and the Fourier modes associated with the average of points is the difference of
Fourier modes, we are lead to consider that the small parameter in the plane-parallel expansion in Fourier space is
|∆k|/k. We are thus tempted to look for an expansion of the type
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the prefactor 1/|∆k|3 being introduced from dimensional arguments. Performing a Fourier transform on ξ̂(d,k),
and using the Rayleigh formula (A8) to expand the exponential, would lead to Hankel-type relations between the
coefficients in mixed spaced and Fourier space in the form
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From the Weber integrals of Appendix A.4, we already see that this would not be defined if ℓ and n were not both
odd or both even, that is if they would not have the same parity, given that one would possibly encounter the poles of
the Γ functions, e.g. for n ≥ ℓ+3. Since we have shown that ℓ and n always have the same parity, such problem never
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only corrections for n even appear, and that only even multipoles contribute but, for given n, ℓmax = n + 2 in the
expansion (4.9).
To summarize, in configuration space wide angle effects are encoded in corrections linear in r/d if the parametrization

used is not symmetric enough, e.g. for the case v = 0. The largest effect in that case is the dipole correction (ℓ = 1)
which could be used to constrain β. However for a balanced parametrization such as the median or the bisector
parametrizations, the corrections are quadratic in r/d. In all cases, the only integrals on the power spectrum that
need to be performed up to second order are
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C. Wide-angle corrections in mixed configuration/Fourier space

In the plane-parallel limit, we have already emphasized in Sec. III.C.4 that the standard results appear in the mixed
configuration/Fourier space and not in the Fourier space. In that case we need to Fourier transform the dependence
in r while keeping the dependence in the average distance d. This leads to define a power spectrum at a distance d.
The dependence on d in the configuration space correlation function (4.9) appears through its norm d and through
the angle µd r = d̂ · r̂. We then find that in the mixed space, the natural perturbative expansion is in powers of 1/(kd)
as
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with an angular multipoles expansion given by
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with µkd = k̂ · d̂. Eq. (4.29) is obtained by expanding the exponential in spherical waves and using the addition
theorem for Legendre polynomials. Given the global rotational invariance, we find that from the apparent six degrees
of freedom of ξ̂z(d,k), only three remain as it depends only on d, k and µkd.
At lowest order, that is considering the term n = 0 in (4.28), we get
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thus recovering the plane-parallel result (3.54).
The wide angle corrections can also be computed for each type of parametrization.

• Asymmetric parametrization (v = 0)

The first order correction is
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where the integrals Ipqn are defined in Appendix F.1 and listed in F.2. After integration by parts we obtain
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Order zero (plane parallel):

Second order (first correction to plane parallel):

Mixed space



Conclusions 

RSD induces mode coupling and only the power spectrum at a given distance can be defined 
(in a mixed space) 

Wide angle effects can be incorporated as an expansion around the plane parallel limit. The 
expansion depends on the geometry chosen, and the bisector angle parametrization is 
optimal.


