## RSD and Geometry

Arxiv:1506.06596 with F. Bernardeau and C. Pitrou
Paulo Reimberg (reimberg@iap.fr)
Yukawa Institute for Theoretical Physics 08/04


Configuration space: general formula for wide angle effects and small angle limit

Mixed space: where $P(k)$ can be defined; Kaiser formula at the limit

Fourier space: general formula and mode coupling

| Expansions around plane parallel limit ( $n=0$ ) | small parameter | $\mathrm{C}_{\mathrm{pp}}^{z}(\mathbf{r}$ |
| :---: | :---: | :---: |
| $\xi^{z}(\mathbf{d}, \mathbf{r})=\sum_{n=0}^{\infty}\left(\frac{r}{d}\right)^{n} \sum_{\ell=0}^{\infty} \xi_{\ell}^{(n)}(r) P_{\ell}\left(\mu_{\mathbf{d} \mathbf{r}}\right)$ | $\frac{r}{d}$ | $\xi_{\ell}^{(n)}: \mathbb{R} \rightarrow \mathbb{R}$ |
| $\widehat{\xi}^{z}(\mathbf{d}, \mathbf{k})=\widetilde{\zeta}^{z}(\mathbf{d}, \mathbf{k})=\sum_{n=0}^{\infty}\left(\frac{1}{k d}\right)^{n} \sum_{\ell=0}^{\infty} \mathcal{P}_{\ell}^{(n)}(k) P_{\ell}\left(\mu_{\mathbf{k} \mathbf{d}}\right)$ | $\frac{1}{k d}$ | $\mathcal{P}_{\ell}^{(n)}: \mathbb{R} \rightarrow \mathbb{C}$ |
| $\zeta^{z}(\Delta \mathbf{k}, \mathbf{k})=\delta_{D}(\Delta \mathbf{k}) \zeta_{0}^{(0)}(k)+\frac{1}{4 \pi\|\Delta \mathbf{k}\|^{3}} \sum_{n=0}^{\infty}\left(\frac{\|\Delta \mathbf{k}\|}{k}\right)^{n} \sum_{\substack{\ell=0 \\(\ell, n) \neq(0,0)}}^{\infty} \zeta_{\ell}^{(n)}(k) P_{\ell}\left(\mu_{\mathbf{k}} \Delta\right)$ | $\frac{\|\Delta \mathbf{k}\|}{k}$ | $\zeta_{\ell}^{(n)}: \mathbb{R} \rightarrow \mathbb{C}$ |

## RSD

$$
\rho^{z}(\mathbf{s}) \mathrm{d}^{3} \mathbf{s}=\rho(\mathbf{x}) \mathrm{d}^{3} \mathbf{x}
$$



$$
\delta^{z}=\delta-\partial_{i} \alpha^{i}
$$

The volume in redshift space is affected by the divergence of the displacement field $\alpha_{i}$, and this translates into a modification of the density with an opposite sign.

$$
\begin{aligned}
& \partial_{i} \alpha_{i}=\frac{1}{r^{2}} \partial_{r}\left(r^{2} \alpha_{r}\right)=\frac{1}{r^{2}} \partial_{r}\left(r^{2} \frac{\partial_{r} V}{\mathcal{H}}\right)=-\frac{\beta}{r^{2}} \partial_{r}\left[r^{2} \partial_{r}\left(\triangle^{-1} \delta\right)\right] \\
& \mid \\
& \theta=\frac{\partial_{i} v^{i}}{\mathcal{H}}=\frac{\Delta V}{\mathcal{H}}=-\beta \delta
\end{aligned}
$$

$$
\delta^{z}(\mathbf{r})=\delta(\mathbf{r})+\beta \mathcal{O}_{r}\left(\triangle^{-1} \delta(\mathbf{r})\right) \quad \delta^{z}(\mathbf{r})=\int \frac{\mathrm{d}^{3} \mathbf{k}}{(2 \pi)^{3 / 2}} \delta(\mathbf{k})\left[1-\frac{\beta}{k^{2}} \mathcal{O}_{r}\right] \mathrm{e}^{\mathrm{i} \mathbf{k} \cdot \mathbf{r}}
$$

$$
F_{\left[\left|\Delta^{-1} g\right|\right.}=-\frac{\sigma^{(k)}\left(k^{2}\right.}{k^{2}}
$$

## Covariance



$$
\begin{array}{r}
C^{z}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=\int \frac{k^{2} \mathrm{~d} k}{2 \pi^{2}} \mathcal{P}(k)\left[1-\frac{\beta}{k^{2}} \mathcal{O}_{r_{1}}\right]\left[1-\frac{\beta}{k^{2}} \mathcal{O}_{r_{2}}\right] j_{0}(k r) \\
C\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right) \equiv\left\langle\delta\left(\mathbf{k}_{1}\right) \delta^{\star}\left(\mathbf{k}_{2}\right)\right\rangle=\mathcal{P}(k) \delta_{D}\left(\mathbf{k}_{1}-\mathbf{k}_{2}\right) \\
\mathrm{e}^{\mathrm{ir} \cdot \mathbf{k}}=4 \pi \sum_{\ell m}^{\mathrm{i}^{i} j_{\ell}(k r) \mathrm{Y}_{\ell m}(\hat{\mathbf{r}}) \mathrm{Y}_{\ell m}^{\star}(\hat{\mathbf{k}})=\sum_{\ell}(2 \ell+1)^{\ell} j_{\ell}(k r) P_{\ell}(\hat{\mathbf{k}} \cdot \hat{\mathbf{r}})} \\
j_{0}(k r)=\sum_{\ell}(2 \ell+1) j_{\ell}\left(k r_{1}\right) j_{\ell}\left(k r_{2}\right) P_{\ell}\left(\hat{\mathbf{r}}_{1} \cdot \hat{\mathbf{r}}_{2}\right)
\end{array}
$$

$$
C^{z}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=\int \frac{k^{2} \mathrm{~d} k}{2 \pi^{2}} \mathcal{P}(k) I\left[j_{0}(k r)\right], \quad I\left[j_{0}(k r)\right] \equiv\left[1+\beta+\frac{\beta \mathrm{L}_{\nu_{12}}^{2}}{\left(k r_{1}\right)^{2}}\right]\left[1+\beta+\frac{\beta \mathrm{L}_{\nu_{12}}^{2}}{\left(k r_{2}\right)^{2}}\right] j_{0}(k r)
$$

General formula for RSD
Triangle geometry
Equivalent to Papai \& Szapudi $(08)$

$$
\begin{aligned}
& r^{2}\left(r_{1}, r_{2}, \phi\right) \equiv\left|\mathbf{r}_{2}-\mathbf{r}_{1}\right|^{2}=\left(r_{1}+r_{2}\right)^{2} \sin ^{2}(\phi / 2)+\left(r_{2}-r_{1}\right)^{2} \cos ^{2}(\phi / 2) \\
& r^{2} \approx\left(r_{2}-r_{1}\right)^{2}+\frac{1}{8}\left(r_{1}^{2}+6 r_{1} r_{2}+r_{2}^{2}\right) \phi^{2}
\end{aligned}
$$



$$
\begin{aligned}
& \frac{2}{d^{2}}\left(\frac{1}{\phi} \partial_{\phi} \phi \partial_{\phi}\right) j_{0}(k r(\phi))=-\frac{4}{3} k^{2}\left[j_{0}(k r) P_{0}\left(\mu_{\mathbf{d} \mathbf{r}}\right)+j_{2}(k r) P_{2}\left(\mu_{\mathbf{d} \mathbf{r}}\right)\right] \\
& \frac{1}{d^{4}}\left(\frac{1}{\phi} \partial_{\phi} \phi \partial_{\phi}\right)^{2} j_{0}(k r(\phi))=k^{4}\left[\frac{8}{15} j_{0}(k r) P_{0}\left(\mu_{\mathbf{d} \mathbf{r}}\right)-\frac{16}{21} j_{2}(k r) P_{2}\left(\mu_{\mathbf{d} \mathbf{r}}\right)+\frac{8}{35} j_{4}(k r) P_{4}\left(\mu_{\mathbf{d} \mathbf{r}}\right)\right]
\end{aligned}
$$

$$
\xi_{0}^{(0)}(r)=\left(1+\frac{2}{3} \beta+\frac{1}{5} \beta^{2}\right) \Xi_{0}^{0}(r) \quad \xi_{4}^{(0)}(r)=\frac{8}{35} \beta^{2} \Xi_{4}^{0}(r)
$$

$$
C_{\mathrm{pp}}^{z}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=\sum_{\ell=0,2,4} \xi_{\ell}^{(0)}(r) P_{\ell}\left(\mu_{\mathbf{d} \mathbf{r}}\right) \quad \xi_{2}^{(0)}(r)=-\left(\frac{4}{3} \beta+\frac{4}{7} \beta^{2}\right) \Xi_{2}^{0}(r) \quad \Xi_{\ell}^{m}(r) \equiv \int \frac{k^{2} \mathrm{~d} k}{2 \pi^{2}}(k r)^{-m} j_{\ell}(k r) \mathcal{P}(k)
$$

## Fourier space: kernel $\mathcal{K}$

$$
\begin{array}{r}
\delta^{z}(\mathbf{k})=(1+\beta) \delta(\mathbf{k})+\beta \int \frac{\mathrm{d}^{3} \mathbf{p}}{p^{2}} \delta(\mathbf{p}) \mathrm{L}_{\hat{\mathbf{p}}}^{2}\left(\int \frac{\mathrm{~d}^{3} \mathbf{r}}{(2 \pi)^{3}} \frac{\mathrm{e}^{\mathrm{i}(\mathbf{p}-\mathbf{k}) \cdot \mathbf{r}}}{r^{2}}\right) \\
\int \frac{\mathrm{d}^{3} \mathrm{r}}{(2 \pi)^{3}} \frac{\mathrm{e}^{(\mathrm{p}-\mathbf{p} \cdot \mathbf{r}}}{r^{2}}=\frac{1}{4 \pi|\mathbf{k}-\mathbf{p}|} \\
\frac{1}{\left|\mathbf{k}-\mathbf{k}^{\prime}\right|}=\sum_{\ell} \frac{k_{\ell}^{\ell}}{k_{>}^{\ell+1}} P_{\ell \ell}\left(\hat{\left.\mathbf{k} \cdot \mathbf{k}^{\prime}\right)}\right. \\
\mathcal{K}\left(\mathbf{k}, \mathbf{k}^{\prime}\right)=\mathrm{L}_{\nu_{k k^{\prime}}}^{2}\left(\frac{1}{4 \pi\left|\mathbf{k}-\mathbf{k}^{\prime}\right|}\right)=\frac{1}{4 \pi} \sum_{\ell} \frac{k_{<}^{\ell}}{k_{>}^{\ell+1}} \mathrm{~L}_{\nu_{k k^{\prime}}}^{2} P_{\ell}\left(\hat{\mathbf{k}} \cdot \hat{\mathbf{k}}^{\prime}\right) \\
=-\frac{1}{4 \pi} \sum_{\ell} \ell(\ell+1) \frac{k_{<}^{\ell}}{k_{>}^{\ell+1}} P_{\ell}\left(\hat{\mathbf{k}} \cdot \hat{\mathbf{k}}^{\prime}\right)
\end{array}
$$

$$
\begin{aligned}
C^{z}\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right)= & (1+\beta)^{2} \mathcal{P}\left(k_{1}\right) \delta_{D}^{3}\left(\mathbf{k}_{1}-\mathbf{k}_{2}\right)+\beta(1+\beta)\left[\frac{\mathcal{P}\left(k_{1}\right)}{k_{1}^{2}} \mathcal{K}\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right)+\frac{\mathcal{P}\left(k_{2}\right)}{k_{2}^{2}} \mathcal{K}\left(\mathbf{k}_{2}, \mathbf{k}_{1}\right)\right] \\
& +\beta^{2} \int \mathrm{~d}^{3} \mathbf{p} \frac{\mathcal{P}(p)}{p^{4}} \mathcal{K}\left(\mathbf{k}_{1}, \mathbf{p}\right) \mathcal{K}\left(\mathbf{p}, \mathbf{k}_{2}\right)
\end{aligned}
$$

## Fourier space: kernel $\mathcal{N}$

$$
\Delta\left(\frac{-1}{4 \pi\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}\right)=\delta_{D}\left(\mathbf{r}-\mathbf{r}^{\prime}\right)
$$

$$
\mathcal{N}\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right) \equiv-k_{1}^{2} \mathcal{O}_{k_{1}}\left(\frac{1}{4 \pi\left|\mathbf{k}_{1}-\mathbf{k}_{2}\right|}\right)=\mathcal{K}\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right)+k_{1}^{2} \delta_{D}\left(\mathbf{k}_{\mathbf{1}}-\mathbf{k}_{2}\right)
$$

$$
C^{z}\left(\mathbf{k}_{1}, \mathbf{k}_{\mathbf{2}}\right)=P\left(k_{1}\right) \delta_{D}^{3}\left(\mathbf{k}_{1}-\mathbf{k}_{2}\right)+\beta\left[\frac{P\left(k_{1}\right)}{k_{1}^{2}} \mathcal{N}\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right)+\frac{P\left(k_{2}\right)}{k_{2}^{2}} \mathcal{N}\left(\mathbf{k}_{2}, \mathbf{k}_{1}\right)\right]+\beta^{2} \int \mathrm{~d}^{3} \mathbf{p} \frac{P(p)}{p^{4}} \mathcal{N}\left(\mathbf{k}_{1}, \mathbf{p}\right) \mathcal{N}\left(\mathbf{p}, \mathbf{k}_{2}\right)
$$

Always mode coupling: Zaroubi \& Hoffman (1993)

## Plane-parallel limit



2) Fourier space

$$
\mathrm{e}^{\mathrm{i} \mathbf{k}_{1} \cdot \mathbf{r}_{1}} \mathrm{e}^{-\mathrm{i} \mathbf{k}_{2} \cdot \mathbf{r}_{2}}=\mathrm{e}^{\mathrm{id} \cdot \Delta \mathbf{k}} \mathrm{e}^{-\mathrm{i} \mathbf{r} \cdot \mathbf{k}}
$$

with:

$$
\begin{aligned}
& \Delta \mathbf{k} \equiv \mathbf{k}_{1}-\mathbf{k}_{2} \\
& \mathbf{k} \equiv\left(\mathbf{k}_{1}+\mathbf{k}_{2}\right) / 2
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{r}=\mathbf{r}_{1}-\mathbf{r}_{2} \\
& \mathbf{d}=\left(\mathbf{r}_{1}+\mathbf{r}_{2}\right) / 2
\end{aligned}
$$

$\mathcal{O}_{k} \frac{1}{4 \pi\left|\mathbf{k}-\mathbf{k}^{\prime}\right|}=\mathcal{O}_{k}^{\mathrm{PV}} \frac{1}{4 \pi\left|\mathbf{k}-\mathbf{k}^{\prime}\right|}-\frac{1}{3} \delta\left(\mathbf{k}-\mathbf{k}^{\prime}\right) \xrightarrow{\frac{|\Delta \mathbf{k}|}{k} \ll 1} 4 \pi \overline{\mathcal{N}}\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right)=-\frac{2 k^{2}}{|\Delta \mathbf{k}|^{3}} P_{2}\left(\mu_{\mathbf{k}} \Delta\right)+\frac{4 \pi k^{2}}{3} \delta_{D}(\Delta \mathbf{k})$
Blanchet et al. (04)

$$
C_{\mathrm{pp}}^{z}\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right)=\delta_{D}(\Delta \mathbf{k}) \zeta_{\ell}^{(0)}(k)+\frac{1}{4 \pi|\Delta \mathbf{k}|^{3}} \sum_{\ell=2,4} \zeta_{\ell}^{(0)}(k) P_{\ell}\left(\mu_{k \Delta}\right)
$$

$$
\begin{aligned}
\zeta_{0}^{(0)}(k) & =\left(1+\frac{2}{3} \beta+\frac{1}{5} \beta^{2}\right) \mathcal{P}(k) \\
\zeta_{2}^{(0)}(k) & =\left(-4 \beta-\frac{12}{7} \beta^{2}\right) \mathcal{P}(k) \\
\zeta_{4}^{(0)}(k) & =\frac{12}{7} \beta^{2} \mathcal{P}(k)
\end{aligned}
$$

"Power spectrum at a given d"

$$
\begin{aligned}
& \zeta_{\mathrm{pp}}^{z}(\Delta \mathbf{k}, \mathbf{k})= \mathcal{P}(k) \delta_{D}(\Delta \mathbf{k})+2 \beta \frac{\mathcal{P}(k)}{k^{2}} \overline{\mathcal{N}}_{\mathbf{k}}(\Delta \mathbf{k}) \\
& \prod_{\mathcal{F}^{-1}}+(2 \pi)^{3 / 2} \beta^{2} \frac{\mathcal{P}(k)}{k^{4}} \int \frac{\mathrm{~d}^{3} \Delta \mathbf{p}}{(2 \pi)^{3 / 2} \overline{\mathcal{N}}_{\mathbf{k}}(\Delta \mathbf{p}) \overline{\mathcal{N}}_{\mathbf{k}}(\Delta \mathbf{k}-\Delta \mathbf{p})} \begin{array}{l}
\text { (convolution becomes product) }
\end{array}
\end{aligned}
$$

$$
\widetilde{\mathcal{N}}_{\mathbf{k}}(\mathbf{d}) \equiv \int \frac{\mathrm{d}^{3} \Delta \mathbf{p}}{(2 \pi)^{3 / 2}} \overline{\mathcal{N}}_{\mathbf{k}}(\Delta \mathbf{p}) \mathrm{e}^{\mathrm{i} \Delta \mathbf{p} \cdot \mathbf{d}}=\frac{1}{(2 \pi)^{3 / 2}}\left(\frac{2}{3} k^{2} P_{2}\left(\mu_{\mathbf{k} \mathbf{d}}\right)+\frac{1}{3} k^{2}\right)=\frac{k^{2} \mu_{\mathbf{k} \mathbf{d}}^{2}}{(2 \pi)^{3 / 2}}
$$

$$
\left[\mathcal{P}_{\mathbf{d}}(\mathbf{k})=\right] \widehat{\zeta}_{\mathrm{p}}^{z}(\mathbf{d}, \mathbf{k}) \equiv \int \frac{\mathrm{d}^{3} \Delta \mathbf{k}}{(2 \pi)^{3 / 2}} \zeta_{\mathrm{pp}}^{z}(\Delta \mathbf{k}, \mathbf{k}) \mathrm{e}^{\mathrm{i} \Delta \mathbf{k} \cdot \mathbf{d}}
$$

$$
=\frac{\mathcal{P}(k)}{(2 \pi)^{3 / 2}}\left(1+\beta \mu_{\mathbf{k ~ d}}^{2}\right)^{2} .
$$

$$
\begin{aligned}
& \widehat{\xi}_{\mathrm{pp}}^{z}(\mathbf{d}, \mathbf{k}) \equiv \int \frac{\mathrm{d}^{3} \mathbf{r}}{(2 \pi)^{3 / 2}} \xi_{\mathrm{pp}}^{z}(\mathbf{d}, \mathbf{r}) \mathrm{e}^{-\mathrm{i} \mathbf{k} \cdot \mathbf{r}} \\
& \widehat{\xi}_{\mathrm{pp}}^{z}(\mathbf{d}, \mathbf{k})=\sum_{\ell=0,2,4}\left[\sqrt{\frac{2}{\pi}}(-i)^{\ell} \int \mathrm{d} r r^{2} j_{\ell}(k r) \xi_{\ell}^{(0)}(r)\right] P_{\ell}\left(\mu_{\mathbf{k} \mathbf{d}}\right)
\end{aligned}
$$

## Plane-parallel limit <br> 3) Mixed space

$$
\begin{aligned}
\widetilde{\zeta}_{\mathrm{pp}}^{z}(\mathbf{d}, \mathbf{k}) & =\sum_{\ell=0,2,4} \mathcal{P}_{\ell}^{(0)}(k) P_{\ell}\left(\mu_{\mathbf{k} \mathbf{d}}\right) \\
\mathcal{P}_{0}^{(0)}(k) & =\left(1+\frac{2}{3} \beta+\frac{1}{5} \beta^{2}\right) \frac{\mathcal{P}(k)}{(2 \pi)^{3 / 2}} \\
\mathcal{P}_{2}^{(0)}(k) & =\left(\frac{4}{3} \beta+\frac{4}{7} \beta^{2}\right) \frac{\mathcal{P}(k)}{(2 \pi)^{3 / 2}} \\
\mathcal{P}_{4}^{(0)}(k) & =\frac{8}{35} \beta^{2} \frac{\mathcal{P}(k)}{(2 \pi)^{3 / 2}}
\end{aligned}
$$

## Plane-parallel limit

$$
\widetilde{\zeta}_{\mathrm{pp}}^{z}(\mathbf{d}, \mathbf{k}) \equiv \int \frac{\mathrm{d}^{3} \Delta \mathbf{k}}{(2 \pi)^{3 / 2}} \zeta_{\mathrm{pp}}^{z}(\Delta \mathbf{k}, \mathbf{k}) \mathrm{e}^{\mathrm{i} \Delta \mathbf{k} \cdot \mathbf{d}}=\frac{\mathcal{P}(k)}{(2 \pi)^{3 / 2}}\left(1+\beta \mu_{\mathbf{k} \mathbf{d}}^{2}\right)^{2}
$$

Fourier transform in d after the replacement:

$$
\mu_{\mathrm{kd}} \rightarrow \mu_{\mathrm{kz}} \longrightarrow \text { makes sense in mixed space }
$$

$$
\zeta_{\mathrm{pp}}^{z}(\Delta \mathbf{k}, \mathbf{k}) \approx \zeta_{\text {Kaiser }}^{z}(\Delta \mathbf{k}, \mathbf{k})=\delta_{D}(\Delta \mathbf{k}) \mathcal{P}(k)\left(1+\beta \mu_{\mathbf{k} \mathbf{z}}^{2}\right)^{2}=\delta_{D}(\Delta \mathbf{k}) \sum_{\ell=0,2,4} \mathcal{P}_{\ell}^{(0)}(k) P_{\ell}\left(\mu_{\mathbf{k} \mathbf{z}}\right)
$$

Kaiser (87)

Only the power-spectrum for a given $\mathbf{d}$ is well defined, and it has by definition a mixed dependence on variables in configuration and Fourier spaces.

$$
C^{z}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=\int \frac{k^{2} \mathrm{~d} k}{2 \pi^{2}} \mathcal{P}(k) I\left[j_{0}(k r)\right], \quad I\left[j_{0}(k r)\right] \equiv\left[1+\beta+\frac{\beta \mathrm{L}_{\nu_{12}}^{2}}{\left(k r_{1}\right)^{2}}\right]\left[1+\beta+\frac{\beta \mathrm{L}_{\nu_{12}}^{2}}{\left(k r_{2}\right)^{2}}\right] j_{0}(k r)
$$

| Expansions around plane parallel limit $(n=0)$ | small <br> parameter |  |
| ---: | :---: | :---: |
| $\xi^{z}(\mathbf{d}, \mathbf{r})=\sum_{n=0}^{\infty}\left(\frac{r}{d}\right)^{n} \sum_{\ell=0}^{\infty} \xi_{\ell}^{(n)}(r) P_{\ell}\left(\mu_{\mathbf{d} \mathbf{r}}\right)$ | $\frac{r}{d}$ | $\xi_{\ell}^{(n)}: \mathbb{R} \rightarrow \mathbb{R}$ |
| $\widehat{\xi}^{z}(\mathbf{d}, \mathbf{k})=\widetilde{\zeta}^{z}(\mathbf{d}, \mathbf{k})=\sum_{n=0}^{\infty}\left(\frac{1}{k d}\right)^{n} \sum_{\ell=0}^{\infty} \mathcal{P}_{\ell}^{(n)}(k) P_{\ell}\left(\mu_{\mathbf{k} \mathbf{d}}\right)$ | $\frac{1}{k d}$ | $\mathcal{P}_{\ell}^{(n)}: \mathbb{R} \rightarrow \mathbb{C}$ |

(full Fourier coefficients are proportional to those in mixed space)

| $v=0$ | $n$ | $\ell$ |
| :---: | :---: | :---: |
|  | 0 | $0,2,4$ |
|  | 1 | $1,3,5$ |
|  | 2 | $0,2,4,6$ |


| $v=1 / 2$ | $n$ | $\ell$ |
| :---: | :---: | :---: |
|  | 0 | $0,2,4$ |
|  | 1 | X |
|  | 2 | $0,2,4,6$ |

$$
\begin{aligned}
\text { parity rule: } n \text { odd } & \Rightarrow \ell \text { odd } \\
n \text { even } & \Rightarrow \ell \text { even }
\end{aligned}
$$

| bisector | $n$ | $\ell$ |
| :---: | :---: | :---: |
|  | 0 | $0,2,4$ |
|  | 1 | $X$ |
|  | 2 | $0,2,4$ |



## Configuration space

$$
\xi^{z}(\mathbf{d}, \mathbf{r})=\sum_{n=0}^{\infty}\left(\frac{r}{d}\right)^{n} \sum_{\ell=0}^{\infty} \xi_{\ell}^{(n)}(r) P_{\ell}\left(\mu_{\mathbf{d} \mathbf{r}}\right)
$$

Order zero (plane parallel):

$$
\begin{aligned}
\xi_{0}^{(0)}(r) & =\left(1+\frac{2}{3} \beta+\frac{1}{5} \beta^{2}\right) \Xi_{0}^{0}(r) \\
\xi_{2}^{(0)}(r) & =-\left(\frac{4}{3} \beta+\frac{4}{7} \beta^{2}\right) \Xi_{2}^{0}(r) \\
\xi_{4}^{(0)}(r) & =\frac{8}{35} \beta^{2} \Xi_{4}^{0}(r)
\end{aligned}
$$

Second order (first correction to plane parallel):

$$
\begin{aligned}
\xi_{0}^{(2)}(r) & =\left(\frac{2}{9} \beta-\frac{14}{15} \beta^{2}\right) \Xi_{0}^{0}(r)+\left(\frac{1}{45} \beta-\frac{11}{45} \beta^{2}\right) \Xi_{2}^{0}(r)+\frac{4}{3} \beta^{2} \Xi_{0}^{2}(r) \\
\xi_{2}^{(2)}(r) & =-\left(\frac{8}{9} \beta+\frac{4}{15} \beta^{2}\right) \Xi_{0}^{0}(r)-\left(\frac{29}{63} \beta+\frac{29}{147} \beta^{2}\right) \Xi_{2}^{0}(r)-\frac{4}{245} \beta^{2} \Xi_{4}^{0}(r), \\
\xi_{4}^{(2)}(r) & =-\left(\frac{8}{35} \beta+\frac{24}{248} \beta^{2}\right) \Xi_{2}^{0}(r)+\frac{4}{245} \beta^{2} \Xi_{4}^{0}(r)
\end{aligned}
$$

$$
\Xi_{\ell}^{0}(r)=\int \frac{\mathrm{d} k k^{2}}{2 \pi^{2}} \mathcal{P}(k) j_{\ell}(k r) \quad \text { with } \quad \ell=0,2,4, \quad \text { and } \quad \Xi_{0}^{2}(r)=\int \frac{d k}{2 \pi^{2} r^{2}} \mathcal{P}(k) j_{0}(k r)
$$

## Mixed space

$$
\begin{gathered}
\widehat{\xi}^{z}(\mathbf{d}, \mathbf{k}) \equiv \int \frac{\mathrm{d}^{3} \mathbf{r}}{(2 \pi)^{3 / 2}} \mathrm{e}^{-\mathrm{i} \mathbf{k} \cdot \mathbf{r}} \xi^{z}(\mathbf{d}, \mathbf{r}) \equiv \sum_{n=0}^{\infty} \frac{1}{(k d)^{n}} \widehat{\xi}^{z(n)}\left(k, \mu_{\mathbf{k} \mathbf{d}}\right) \\
\widehat{\xi}^{z(n)}\left(k, \mu_{\mathbf{k} \mathbf{d}}\right) \equiv \sum_{\ell=0}^{\infty} \mathcal{P}_{\ell}^{(n)}(k) P_{\ell}\left(\mu_{\mathbf{k} \mathbf{d}}\right), \quad \mathcal{P}_{\ell}^{(n)}(k)=\left[\sqrt{\frac{2}{\pi}}(-\mathrm{i})^{\ell} \int r^{2} \mathrm{~d} r(k r)^{n} j_{\ell}(k r) \xi_{\ell}^{(n)}(r)\right]
\end{gathered}
$$

Order zero (plane parallel):

$$
\begin{aligned}
\widehat{\xi}^{z(0)}\left(k, \mu_{k}\right) & =\frac{1}{(2 \pi)^{3 / 2}}\left\{\left[1+\frac{2}{3} \beta+\frac{1}{5} \beta^{2}\right] P_{0}\left(\mu_{\mathbf{k} \mathbf{d}}\right)+\left[\frac{4}{3} \beta+\frac{4}{7} \beta^{2}\right] P_{2}\left(\mu_{\mathbf{k} \mathbf{d}}\right)+\beta^{2} \frac{8}{35} P_{4}\left(\mu_{\mathbf{k} \mathbf{d}}\right)\right\} \mathcal{P}(k) \\
& =\frac{\mathcal{P}(k)}{(2 \pi)^{3 / 2}}\left(1+\beta \mu_{\mathbf{k} \mathbf{d}}^{2}\right)^{2},
\end{aligned}
$$

Second order (first correction to plane parallel):

$$
\begin{aligned}
\widehat{\xi}^{z(2)}\left(k, \mu_{\mathbf{k} \mathbf{d}}\right)=\frac{1}{(2 \pi)^{3 / 2}} & \left\{\mathcal{P}(k)\left[\left(-\frac{64}{35} \beta-\frac{16}{35} \beta^{2}\right) P_{4}\left(\mu_{\mathbf{k} \mathbf{d}}\right)+\left(\frac{58}{21} \beta+\frac{82}{49} \beta^{2}\right) P_{2}\left(\mu_{\mathbf{k d}}\right)+\frac{1}{15} \beta+\frac{3}{5} \beta^{2}\right]\right. \\
& +k \mathcal{P}^{\prime}(k)\left[\left(\frac{8}{7} \beta+\frac{16}{35} \beta^{2}\right) P_{4}\left(\mu_{\mathbf{k} \mathbf{d}}\right)+\left(-\frac{38}{21} \beta-\frac{18}{49} \beta^{2}\right) P_{2}\left(\mu_{\mathbf{k} \mathbf{d}}\right)-\frac{1}{3} \beta-\frac{3}{5} \beta^{2}\right] \\
& \left.+k^{2} \mathcal{P}^{\prime \prime}(k)\left[\left(-\frac{8}{35} \beta-\frac{4}{35} \beta^{2}\right) P_{4}\left(\mu_{\mathbf{k} \mathbf{d}}\right)+\left(\frac{3}{7} \beta+\frac{5}{49} \beta^{2}\right) P_{2}\left(\mu_{\mathbf{k} \mathbf{d}}\right)-\frac{1}{5} \beta+\frac{1}{15} \beta^{2}\right]\right\}
\end{aligned}
$$

## Conclusions

RSD induces mode coupling and only the power spectrum at a given distance can be defined (in a mixed space)

Wide angle effects can be incorporated as an expansion around the plane parallel limit. The expansion depends on the geometry chosen, and the bisector angle parametrization is optimal.

