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Density in redshift space

ρs (X, v ) =

∫

d z ρ(x)
1

p

2πβT (x)
exp

�

−
(v − vc(x)−u (x))2

2βT (x)

�

Cold flow: βT → 0 (effectivly never achieved due to finite redshift rezolution)

ρs (X, v ) =

∫

d z ρ(x)δD (v − vc(x)−u (x))

ISM/turbulence studies
No detailed predictions from underlying
theory: mode content or relation
between velocities and density are not
known apriori.
Lesson: slice and dice PPV cube,
synthetically varying some control
parameters to disentangle effects.
Example: measuremets in velocity
channels of variable width.

Cosmology
Good predictive understanding of
theory that lead to PPZ.
Natural approach: try to fit full
predictions of power and higher order
spectra.
Still valuable - measure some integrals
of spectra that take us straight to
cosmological info. Having control
parameters to vary in your analysis
helps.
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Geometrical measures for random fields

• Properties of ν= c o n s t isocontours - Minkowski functionals
(genus/Euler characteristics χ(ν) , length of isocontours, pencil
beam isocontour crossing statistics, ND (ν))

• Statistics of extrema - peaks, minima, saddles
• Skeleton of the structure, its statistics (length, curvature)
• . . .
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Geometrical measures for random fields

Starting point
Let us think about such properties of a random field ρ as Euler
characteristic (genus), density of maxima, length of skeleton. Their
computation reguire knowledge of the joint distribution

P (ρ,ρi ,ρi j , . . .)

of the field ρ and its first ρi , second ρi j (Hessian matrix) and perhaps
higher derivatives, for instance

nma x (ν) =

∫

0≥λ1≥λ2≥...

P (ρ = ν,ρi ,ρi j )δ(ρi )|ρi j |dρi j

Usual approach is to deal with it in the Hessian eigenvalue space, since
that’s where the boundary conditions are the simplest.
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Non-Gaussian expansion for geometrical statistics

• To treat non-Gaussianities the idea is to expand P (ρ,ρi ,ρi j ) into
orthogonal polinomials around the Gaussian approximation like

P (x ) =G (x )
�

1+
∑

n 〈x n 〉c Hn (x )
�

• The trick to avoid difficulties is an appropriate choice of variables:
• that are invariant wrt symmetries of the problem (isotropy)
• that are polynomial in the field quanities (λ’s are no good)
• that simplify the Gaussian limit, being as uncorrelated as possible

• Useful set is: I1, · · · , IN , q 2, ζ≡ ρ+γI1
1−γ2

where In are N polynomial rotation invariants of the Hessian matrix ρi j ,
I1 = Trρi j , . . . , IN = det |ρi j |

(and I2 . . . IN−1 are built from the minors of orders 2 to N-1 )

• Actually, better to use more ’irreducible’ combinations Ji , in N D -space

J1 = I1 , Js≥2 = I s
1 −

s
∑

p=2

(−N )p C p
s

(s −1)C p
N

I s−p
1 Ip
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Orhogonal polymonial expansion for 2D P (ρ, q 2, J1, J2)

Gaussian limit JPDF

G2D(ζ, q 2, J1, J2) dζdq 2dJ1dJ2 =
1

2π
e −

1
2 (ζ2+2q 2+J 2

1 +2J2)dζdq 2dJ1dJ2

serves as the weight for defining the expansion polynomials in

• ζ, J1 – ([−∞,∞], gaussian weight) – Hermite

• q 2, J2 – ([0,∞], exponential weight) – Laguerre.

P2D(ζ, q 2, J1, J2) =G2D ×
�

1+

∞
∑

n=3

i+2 j+k+2l=n
∑

i , j ,k ,l=0

(−1) j+l

i ! j ! k ! l !

¬

ζi q 2 j
J1

k J2
l
¶

GC
Hi (ζ)L j

�

q 2
�

Hk (J1)L l (J2)





This is an expansion to all orders in powers of the field n .
Expansion coefficients can be predicted by pertrubation theories
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Euler characteristic (genus) as a function of threshold

General expression in N D

χ(ν)
2
= (−1)N

∫ ∞

ν

d x

∫

d q 2q N−1δN
D (q

2)

∫ N
∏

s=1

d JsPND(. . .) IN

can be integrated to give “moment” expansion to all orders

χ(ν) =
1

p
2πR∗

exp

�

−
ν2

2

�

×
2

(2π)N /2

�

γ
p

N

�N



HN−1(ν)+

+
∞
∑

n=3

N
∑

s=0

γ−s
i+2 j=n−s
∑

i , j=0

(−N ) j+s (N −2)!!L
( N−2

2 )
j (0)

i !(2 j +N −2)!!

¬

x i q 2 j
Is

¶

G C
Hi+N−s−1(ν)





(cf first term: Matsubara 1994-2005)

with coefficients that can be predicted by perturbation theories
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How non-Gaussianity develops, eq 2D Euler charachteristic

Excitation of Hermite modes of alternating parity
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“Hermite spectroscopy”
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Redshift space – anisotropic statistics
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Polymonial expansion for P3D in redshift space

Symmetry:
Rotational around the line of sight (LOS along 3rd coordinate)

Variables:

linear(4) x , x3, x33, J1⊥ = x11+ x22

quadratic(3) q 2 = x 2
1 + x 2

2 , Q 2 = x 2
13+ x 2

23, J2⊥ = (x11− x22)2+4x 2
12

cubic(1) Υ =
�

x 2
13− x 2

23

�

(x11− x22)+4x12 x13 x23

Gaussian limit JPDF

G (x ,q 2
⊥,x3 ζ,J2⊥,ξ,Q 2,Υ ) =

1

4π3
p

Q 4 J2⊥−Υ 2
e −

1
2 x 2−q 2

⊥−
1
2 x 2

3−
1
2ζ

2−J2⊥− 1
2ξ

2−Q 2

Uniformly distributed Υ ∈ [−Q 2
p

J2⊥,+Q 2
p

J2⊥] can be integrated over for
Minkowski functionals, extrema . . .
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Euler characteristic in redshift space

χ2+1(ν) =
e −ν

2/2

8π2

�

σ1‖σ
2
1⊥

σ3
H2(ν) +

∞
∑

n=3

χ (n )2+1

�

with non-Gaussian corrections χ (n )2+1, given, to all orders, by

χ (n )2+1(ν) =
σ2

2⊥σ2‖

σ2
1⊥σ1‖

�

∑

σn

(−1) j+m

2m i ! j ! m !
Hi+2(ν)γ‖γ

2
⊥

¬

x i q 2 j
⊥ x 2m

3

¶

GC

−
∑

σn−1

(−1) j+m

2m i ! j ! m !
Hi+1(ν)

¬

x i q 2 j
⊥ x 2m

3

�

γ2
⊥x33+2γ⊥γ‖ J1⊥

�

¶

GC

+
∑

σn−2

(−1) j+m

2m i ! j ! m !
Hi (ν)

¬

x i q 2 j
⊥ x 2m

3

�

2γ⊥(J1⊥x33−γ2Q 2) +γ‖(J
2

1⊥− J2⊥)
�

¶

GC

−
∑

σn−3

(−1) j+m

2m i ! j ! m !
Hi−1(ν)

¬

x i q 2 j
⊥ x 2m

3

�

x33(J
2

1⊥− J2⊥)−2γ2

�

Q 2 J1⊥−Υ
��

¶

GC

�

with coefficients that can be predicted by perturbation theories
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Euler characteristics in redshift space

σ= 0.18, f = 1
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χ0+1
3D =

σ1‖σ
2
1⊥

σ3

e −ν
2/2

8π2

�

H2(ν) +
1

3!
H5(ν)




x 3
�

+H3(ν)

�




x q 2
⊥
�

+




x x 2
3

�

2

�

−
H1(ν)
γ⊥

�


J1⊥q 2
⊥
�

+



J1⊥x 2
3

��

�

Important anisotropy measure βσ = 1− σ2
1⊥

2σ2
1‖
≈ 4

5 f /b
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Slicing through redshift space

χ2D(ν,θ ) =
e −ν

2/2

(2π)3/2
σ2

1⊥
2σ2

√

√

√ 1−βσ sin2 θ

1−βσ
×
�

H1 (ν) +
1

3!
H4 (ν)




x 3
�

+H2(ν)

�




x q 2
⊥
�

+
1

2

cos2θ

1−βσ sin2 θ

�


x x 2
3

�

−



x q 2
⊥
��

�

−
1

γ⊥

�




q 2
⊥ J1⊥

�

+
1

2

cos2θ

1−βσ sin2 θ

�


x 2
3 J1⊥

�

−2



q 2
⊥ J1⊥

��

�

+O (σ2)

�

N2(ν,θ ) =
σ1⊥

2
p

2σ
e −ν

2/2

�

1+βσ
cos2 θ

4

�

×
�

1+
1

3!
H3(ν)




x 3
�

+
1

2
H1(ν)

�




x q 2
⊥
�

+
1

2
cos2 θ

�

1+βσ
3+5 sin2 θ

8

�

�


x x 2
3

�

−



x q 2
⊥
��

�

+O (σ2)

�

N1(ν,θ ) =
σ1⊥p
3πσ

e −ν
2/2

√

√

√ 1−βσ sin2 θ

1−βσ
×
�

1+
1

3!
H3(ν)




x 3
�

+
1

2
H1(ν)

�




x q 2
⊥
�

+
cos2θ

1−βσ sin2 θ

�


x x 2
3

�

−



x q 2
⊥
��

�

+O (σ2)

�
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Invariance of Minkowski functionals

• Minkowski functionals ( but also extrema counts ) are invariant under any local
monotonic transformations x = f (y ) , if one adjust threshold accordingly,
νx = f (νy ). Which is achived by choosing threshold that gives the same filling
factor of the volume above.

• This means that the coefficients in front of every mode in Hermite expansion are
invariant separately. This can be shown perturbatively (?).

• Corollary I: combinations of cumulants in every Hermite mode are invariant wrt to
any local monothonic bias. (Is it order by order in σ expansion ?)

• Corollary II: If the starting field y is Gaussian, these coefficients are zero (or sum to zero ?)

• Corollary IIa: In anisotropic case, angle dependent section of each coefficient should then
vanish separately. In particular

〈x q 2
⊥〉= 〈x x 2

3 〉 →
〈x∇⊥x ·∇⊥x 〉
〈x∇‖ ·∇‖〉

=
σ2

1⊥
σ2

1‖

• This holds for fN L models in leading non Gaussian model explicitly (despite even

transformation being local but non-monotonic in this case)

• But here we are talking about local transformation in redshift space.
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Fiducial experiment

• Cut through redshisift space at different angles. For instance, θ = 0 and θ =π/2
and measure 2D geometrical statistics as the function of filling factor

• Do Hermite decomposition, determine Hn coefficients

• Use the ratio of main Gaussian lines to determine βσ = 1− σ2
1⊥

2σ1‖

H1

�

(χ2D (ν f ,π/2)
�

H1

�

χ2D (ν f , 0)
� =

Æ

1−βσ+O (σ2)
H0

�

N2(ν f ,π/2)
�

H0

�

N2(ν f , 0)
� =

Æ

1−βσ+O (σ2)

Different statistics have different corrections O (σ2), which can be leveraged for
control

• Use angle variable ratio of a secondary to Gaussian line and βσ to determine
normalized cumulant combinations, and their anisotropy

H2

�

N2(ν f ,θ )
�

H0

�

N2(ν f ,θ )
� → 〈x q 2

⊥〉 , 〈x q 2
⊥〉− 〈x x 2

3 〉

• Using theoretical insight ( PT ) relate βσ and higher order redshift cumulants to
real space σ, f , b . . . . To evaluate σ 3D statistics have most power.
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Using non-Gaussianity and redshift distortions of geometrical
measures of the Cosmic Web to recover

β =Ω0.55/b
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Conclusions

• Redshift space distortions are not just nuisance, but a source of
additional information about cosmology of the Universe.

• Redshift space analysis is in principle capable of mining more information
than real space analysis. For that one needs to leverage the anisotropic
properties of redshift space.

• Generalizing previous work, we have developed complete theory of
Minkowski functionals in the bulk and on slices of anisotropic and mildly
non-Gaussian fields.

• At mildly non-linear scales of cosmological structure formation,
non-Gaussian and redshift effects can be, to some extend, disentangled.
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