## Forecasting special events in cosmic history

Christophe Pichon
IAP / KIAS
C. Cadiou, S. Codis, C. Gay D. Pogosyan, C. Laigle, T.Sousbie, M. Musso KIAS

NSTITUTE FOR
ADVANCED ADVANCED A 15-year long project initiated by S. Colombi

Statistics of Merging Peaks of Random Gaussian Fluctuations: Skeleton Tree Formalism

Hitoshi HANAMI
Physics Section, Faculty of Humanities and Social Sciences, Iwate University, Morioka 020 JAPAN

## Context: geometry \& Topology

## Large scale filamentary structure connecting clusters of

 galaxies is evident both in data and simulations

Sloan DS Survey


Geometry of LSS as a probe of cosmology

## Context: feeding galaxies via cold flows?

## Large scale filamentary structure connecting clusters of

 galaxies is evident both in data and simulations

Filamentary accretion regulating stellar formation / AGN feedback/AM acquisition

## Context: skeleton tree

## The skeleton tree formalism

Can we build a merger-tree like structure from the initial conditions?
$\Rightarrow$ Yes! Study the topological structure of the ICs at different scales (Hanami 2001)


Extend Hanami '01 to other critical events

## Context: skeleton tree

## The skeleton tree formalism

Can we build a merger-tree like structure from the initial conditions?
$\Rightarrow$ Yes! Study the topological structure of the ICs at different scales (Hanami 2001) $x^{89}$


Extend Hanami '01 to other critical events

## Context

## Spherical collapse: time-smoothing duality



Understand special events in evolution of cosmic web

## Context

## Spherical collapse: time-smoothing duality



Understand special events in evolution of cosmic web


1D outlook: ridges in position-smoothing landscape


## 1D outlook



Special event : topology of underlying field changes

## 2D outlook



## 2D outlook

## Building the skeleton tree




## 3D outlook

- GRF smoothed at $\neq$ scales
- identify critical points
- build skeleton tree
- find critical events




## 3D outlook



## Critical event PDF

$$
\frac{\partial^{2} \mathcal{N}}{\partial r^{3} \partial R} \equiv\left\langle\delta_{\mathrm{D}}^{(3)}\left(\mathbf{r}-\mathbf{r}_{0}\right) \delta_{\mathrm{D}}\left(R-R_{0}\right)\right\rangle,
$$

where $\mathbf{r}_{0}$ is a (double) critical point in real space and $R_{0}$ the scale at which the two critical points merge.
$\checkmark$ Invoque ergodicity
$\checkmark$ Change variable to (gradient, determinant)


At $\left(R_{0}, \mathbf{r}_{0}\right)$ gradient and one eigenvalue vanish

## Critical event PDF

$$
\frac{\partial^{2} \mathcal{N}}{\partial r^{3} \partial R} \equiv\left\langle\delta_{\mathrm{D}}^{(3)}\left(\mathbf{r}-\mathbf{r}_{0}\right) \delta_{\mathrm{D}}\left(R-R_{0}\right)\right\rangle,
$$

where $\mathbf{r}_{0}$ is a (double) critical point in real space and $R_{0}$ the scale at which the two critical points merge.

$$
d(\delta) \equiv \operatorname{det}(\nabla \nabla \delta)=\lambda_{1} \lambda_{2} \lambda_{3}
$$

$$
\frac{\partial^{2} \mathcal{N}}{\partial r^{3} \partial R}=\left\langle J \delta_{\mathrm{D}}^{(3)}(\nabla \delta) \delta_{\mathrm{D}}(d)\right\rangle
$$

$J(d, \delta)=\left|\begin{array}{cc}\partial_{R} d & \vec{\nabla} d \\ \partial \partial_{R} \vec{\nabla} \delta^{T} & \vec{\nabla} \vec{\nabla} \delta\end{array}\right|$

## Critical event PDF

$$
\frac{\partial^{2} \mathcal{N}}{\partial r^{3} \partial R} \equiv\left\langle\delta_{\mathrm{D}}^{(3)}\left(\mathbf{r}-\mathbf{r}_{0}\right) \delta_{\mathrm{D}}\left(R-R_{0}\right)\right\rangle,
$$

where $\mathbf{r}_{0}$ is a (double) critical point in real space and $R_{0}$ the scale at which the two critical points merge.

$$
d(\delta) \equiv \operatorname{det}(\nabla \nabla \delta)=\lambda_{1} \lambda_{2} \lambda_{3}
$$

$$
\frac{\partial^{2} \mathcal{N}}{\partial r^{3} \partial R}=\left\langle J \delta_{\mathrm{D}}^{(3)}(\nabla \delta) \delta_{\mathrm{D}}(d)\right\rangle
$$

$$
J(d, \delta)=\left\lvert\, \begin{array}{cc}
\begin{array}{cc}
\partial_{R} d & \vec{\nabla} d \\
\partial_{R} \vec{\nabla} \delta^{T} & \vec{\nabla} \vec{\nabla} \delta
\end{array}\left|=\left|\begin{array}{cc}
\partial_{R} d & \vec{\nabla} d \\
-R \vec{\nabla} \Delta \delta^{T} & \vec{\nabla} \vec{\nabla} \delta
\end{array}\right|,,\right. \text { Gaussian filter }
\end{array}\right.
$$

$$
\partial_{R} \delta=-R \Delta \delta
$$

## Critical event PDF

$$
J(d, \delta)=\left|\begin{array}{cc}
\partial_{R} d & \vec{\nabla} d \\
\partial_{R} \vec{\nabla} \delta^{T} & \vec{\nabla} \vec{\nabla} \delta
\end{array}\right|=\left|\begin{array}{cc}
\partial_{R} d & \vec{\nabla} d \\
-R \vec{\nabla} \Delta \delta^{T} & \vec{\nabla} \vec{\nabla} \delta
\end{array}\right|,
$$

for a Gaussian filter

$$
\partial_{R} \delta=-R \Delta \delta
$$

$$
\begin{aligned}
& \frac{\partial^{2} \mathcal{N}}{\partial r^{3} \partial R} \equiv\left\langle\delta _ { \mathrm { D } } ^ { ( 3 ) } \left(\mathbf{r}-\frac{J(d, \delta)}{\sigma_{1} \sigma_{2}^{4} \sigma_{3}}=\left|x_{11} x_{22}\right|\left|\begin{array}{cc}
\partial_{R} x_{33} & x_{33 i} \\
\partial_{R} x_{i} & x_{i j}
\end{array}\right|,\right.\right. \\
& \text { where } \mathbf{r}_{0} \text { is a (double) critica } \\
& \text { at which the two critical poi } \\
& d(\delta) \equiv \operatorname{det}(\nabla \nabla \delta) \\
& =\left|x_{11} x_{22}\right|\left|\begin{array}{cccc}
\partial_{R} x_{33} & x_{133} & x_{233} & x_{333} \\
\partial_{R} x_{1} & x_{11} & 0 & 0 \\
\partial_{R} x_{2} & 0 & x_{22} & 0 \\
\partial_{R} x_{3} & 0 & 0 & 0
\end{array}\right| \\
& =\left|x_{11} x_{22}\right|^{2}\left|\partial_{R} x_{3}\right|\left|x_{333}\right| \text {, } \\
& \frac{\partial^{2} \mathcal{N}}{\partial r^{3} \partial R}=\left\langle J \delta_{\mathrm{D}}^{(3)}(\nabla \delta) \delta_{\mathrm{D}}(d)\right\rangle{ }_{x \equiv \frac{\delta}{\sigma_{0}}, x_{k} \equiv \frac{\nabla_{k} \delta}{\sigma_{1}}, x_{k l} \equiv \frac{\nabla_{k} \nabla_{l} \delta}{\sigma_{2}}, x_{k l m} \equiv \frac{\nabla_{m} \nabla_{l} \nabla_{k} \delta}{\sigma_{3}}}
\end{aligned}
$$

## Derivation

## $\frac{\partial^{2} n}{\partial R \partial \nu}=\frac{\partial^{5} \mathcal{N}}{\partial r^{3} \partial R \partial \nu}$,

$$
\left.=\frac{R}{\tilde{R}} \frac{\left.\langle | x_{11} x_{22}\langle | x_{3 i i}| | x_{333}\right\rangle}{} \delta_{\mathrm{D}}^{(3)}\left(x_{i}\right) \delta_{\mathrm{D}}\left(x_{33}\right) \delta_{\mathrm{D}}(x-\nu)\right\rangle,
$$

$10^{3} \times R^{4} \partial^{4} \mathrm{~N} / \partial r^{3} \partial R$


## Derivation

$$
\begin{aligned}
& \frac{\partial^{2} n}{\partial R \partial \nu}=\frac{\partial^{5} \mathcal{N}}{\partial r^{3} \partial R \partial \nu}, \\
&\left.=\frac{R}{\tilde{R}} \frac{\left.\langle | x_{11} x_{22}| | x_{3 i i}| | x_{333}\right\rangle}{} \delta_{\mathrm{D}}^{(3)}\left(x_{i}\right) \delta_{\mathrm{D}}\left(x_{33}\right) \delta_{\mathrm{D}}(x-\nu)\right\rangle \\
& R_{*}^{3} \tilde{R}
\end{aligned},
$$

E.g. number density of peak-filament mergers to the number density of filament-wall mergers
$r_{2 / 1}=\frac{24 \sqrt{3}}{29 \sqrt{2}-12 \sqrt{3}} \approx 2.05508$.
$10^{3} \times R^{4} \partial^{4} N / \partial r^{3} \partial R$

| $\square$ | -2.5 |
| :--- | :--- |
| $\square$ | -2. |
| $\square$ | -1.5 |
| $\square$ | -1. |
| $\square$ | -0.5 |

cf skeleton length:
packing of transverse curvature + zero longitudinal curvature
PoS

## Derivation

$$
\begin{aligned}
\frac{\partial^{2} n}{\partial R \partial \nu} & =\frac{\partial^{5} \mathcal{N}}{\partial r^{3} \partial R \partial \nu}, \\
& =\frac{R}{\tilde{R}} \frac{\langle | x_{11} x_{22}\left(\left|x_{3 i i}\right|\left|x_{333}\right| \delta_{\mathrm{D}}^{(3)}\left(x_{i}\right) \delta_{\mathrm{D}}\left(x_{33}\right) \delta_{\mathrm{D}}(x-\nu)\right\rangle}{R_{*}^{3} \tilde{R}},
\end{aligned}
$$

E.g. number density of peak-filament

$$
10^{3} \times R^{4} \partial^{4} N \partial \partial^{3} \partial R
$$ mergers to the number density of filament-wall mergers

$$
\begin{equation*}
r_{2 / 1}=\frac{24 \sqrt{3}}{29 \sqrt{2}-12 \sqrt{3}} \approx 2.05508_{v-s} \tag{PoS}
\end{equation*}
$$


cf skeleton length: packing of transverse curvature + zero longitudinal curvature


$$
\begin{aligned}
& \frac{1}{8 \sqrt{5} \pi^{3 / 2}\left(6-5 \gamma^{2}\right)^{4}\left(5 \gamma^{2}-9\right)^{5}} e^{\frac{\gamma^{2}}{2\left(\gamma^{2}-1\right)}}\left(-8 \sqrt{\pi}\left(6-5 \gamma^{2}\right)^{7 / 2}\left(5 \gamma^{2}-9\right)^{5} e^{\frac{\gamma^{2} \gamma^{2}}{10 \gamma^{4}-2 \gamma^{2}+12}}+60 \gamma\left(6-5 \gamma^{2}\right)^{4} \sqrt{2-2 \gamma^{2}}\left(5 \gamma^{2}-9\right) v\left(275 \gamma^{4}+30 \gamma^{2}\left(2 \gamma^{2}-23\right)+351\right)-\right. \\
& 2 \sqrt{\pi}\left(6-5 \gamma^{2}\right)^{4} \sqrt{9-5 \gamma^{2}} \boldsymbol{e}^{\frac{2 \gamma^{2} \nu^{2} \nu^{2}}{24 \gamma^{2}+9}}\left(3600 \gamma^{4} \nu^{4}+120 \gamma^{2}\left(5 \gamma^{2}-9\right)\left(35 \gamma^{2}-27\right) \nu^{2}+\left(9-5 \gamma^{2}\right)^{2}\left(575 \gamma^{4}-1230 \gamma^{2}+783\right)\right)-8 \sqrt{\pi}\left(6-5 \gamma^{2}\right)^{7 / 2}\left(5 \gamma^{2}-9\right)^{5} \boldsymbol{e}^{\frac{\gamma^{2} \gamma^{2}-2 \gamma^{2}+12}{e r f}}\left(\frac{\gamma \nu}{\sqrt{2} \sqrt{5 \gamma^{4}-11 \gamma^{2}+6}}\right)- \\
& \left.2 \sqrt{\pi}\left(6-5 \gamma^{2}\right)^{4} \sqrt{9-5 \gamma^{2}} e^{\frac{2 \nu^{2} \gamma^{2}-14 \gamma^{2}+9}{9}}\left(3600 \gamma^{4} \nu^{4}+120 \gamma^{2}\left(5 \gamma^{2}-9\right)\left(35 \gamma^{2}-27\right) \gamma^{2}+\left(9-5 \gamma^{2}\right)^{2}\left(575 \gamma^{4}-1230 \gamma^{2}+783\right)\right) \mathrm{erf}\left(\frac{\sqrt{2} \gamma \gamma}{\sqrt{5 \gamma^{4}-14 \gamma^{2}+9}}\right)\right)
\end{aligned}
$$

In (invariant) Hessian frame:

## extrema


packing sphere problem: curvature.
skeleton

$$
n_{s k l}=\int P(\mathbf{x}) \prod_{1<i \leq 3} \delta_{\mathrm{D}}\left(x_{i}\right) \lambda_{i} d \mathbf{x}=
$$

section $\propto 1 / \lambda_{2} \lambda_{3}$
packing tube problem: transverse curvature.

## Peak theory: Gaussian predictions

If the field is Gaussian (large scales/early times), the total number density of critical points then reads


And as a function of peak height (analytical in 2D, not in 3D) :

$R_{\star}=\sigma_{1} / \sigma_{2}=$ distance between peaks


## Application: merger rates

Map event count to (z,M)
$\nu \sigma_{0}=\delta_{c} D(z) \quad$ where $\quad \delta_{c}=\frac{3}{20}(12 \pi)^{2 / 3}$
$\partial^{2} n /\left.\partial \log M \partial z \quad \frac{\partial^{2} n}{\partial \log M \partial z}\right|_{c}=\left.\frac{\partial^{2} n}{\partial R \partial \nu}\right|_{c} \delta_{c} \frac{d D}{d z} \frac{R}{3}$


## Application: preserving cosmic connectivity

## On the connectivity of halos

Compute frequency of filament merger compared to halo merger in the vicinity of a halo merger event $\xi_{\mathrm{hf}}(r) / \xi_{\mathrm{hh}}(r)$.


Radius

$$
1+\xi_{p}=\frac{\left\langle\operatorname{cond}_{p}(\mathbf{x}) \operatorname{cond}_{p}(\mathbf{y})\right\rangle}{\left\langle\operatorname{cond}_{p}(\mathbf{x})\right\rangle^{2}}, 1+\xi_{f}=\frac{\left\langle\operatorname{cond}_{f}(\mathbf{x}) \operatorname{cond}_{p}(\mathbf{y})\right\rangle}{\left\langle\operatorname{cond}_{f}(\mathbf{x})\right\rangle\left\langle\operatorname{cond}_{p}(\mathbf{x})\right\rangle}
$$

## Global connectivity for GRF



How many filaments connect to a node?

Number of connected saddles are measured using the Disperse skeleton algorithm (Sousbie +11) in GRF realisations.


Can we predict the mean connectivity?

## Global connectivity for GRF: theory

Because each filament goes through one and only one saddle pt, on average:

$$
\begin{aligned}
\langle\kappa\rangle & =\frac{2 \bar{n}_{\mathrm{sad}}}{\bar{n}_{\mathrm{max}}} \\
& =4 \quad \quad \text { in 2D GRF } \\
& =\frac{2(1057+348 \sqrt{6})}{625} \approx 6.11 \mathrm{in} 3 \mathrm{D} \text { GRF }
\end{aligned}
$$



## Global connectivity for GRF: theory

Because each filament goes through one and only one saddle pt, on average:

$$
\begin{aligned}
\langle\kappa\rangle & =\frac{2 \bar{n}_{\mathrm{sad}}}{\bar{n}_{\mathrm{max}}} \\
& =4 \quad \quad \text { in 2D GRF } \\
& =\frac{2(1057+348 \sqrt{6})}{625} \approx 6.11 \text { in 3D GRF }
\end{aligned}
$$

In d dimensions, (relying on numerical integrations):


Asymptotic result?


2D "ideal" cosmic environment :

Mean local cosmic initial condition homeomorphic to such crystal


## 3D connectivity: topology

3D "ideal" cosmic environment

Mean local cosmic field quasi homeomorphic to such crystal


## GRF connectivity PDF: dependence with scale/ $n_{s}$

Full distribution of connectivity:


Weak dependency on $n_{s}$

## GRF connectivity PDF: dependence with scale/ $n_{s}$

Full distribution of connectivity:


Weak dependency on $n_{s}$

## GRE connectivity: dependence with peak height

Dependence with peak height:


The rarer the peak, the more connected

## GRF connectivity: dependence with peak height

## Joint PDF of $\kappa$ and $v$ in 3D



Notable Result:

- High peaks tend to have more connections
- Peaks with large number of connections are predominantly high
- mean $\langle\kappa \mid \nu\rangle, 6.5(v=2), 10(\nu=3)$



## Connectivity versus Mass in LCDM

Connectivity as a function of Mass in Horizon-4 4 : 1000000 halos.



## Connectivity versus Mass in LCDM

Connectivity as a function of Mass in Horizon-4 4 : 1000000 halos.



## Global connectivity for GRF:IDEA?

Analogy with sphere packing pb


## Peak theory: Clustering (2 point statistics)

Same ideas can be used to also predict the clustering of peaks by means of their 2 point correlation function (also applies to peak saddle etc.):

$$
\xi_{\mathrm{pk}}(\mathrm{r}, \bar{v}=1, \Delta v, \mathrm{n}=0)
$$


exclusion is essential to understand connectivity

where the localized peak number density $\rho_{\mathrm{pk}}(\mathbf{X})$,

$$
\rho_{\mathrm{pk}}(\mathbf{X})=\frac{1}{R_{\star}^{\mathrm{d}}}\left|\operatorname{det}\left(x_{i j}\right)\right| \delta_{\mathrm{D}}\left(x_{i}\right) \Theta_{\mathrm{H}}\left(-\lambda_{i}\right) \delta_{\mathrm{D}}(x-\nu),
$$

## Global connectivity for GRF: theory

## Towards connectivity theory

Idea: Count the number of saddles up to $R_{\max } \ldots$, conditional on the properties of the peak. But what is $R_{\max }$ ? Some characteristic size of a peak-patch around the peak. Let us look (in 3D) where the neighbouring peaks are using peak-peak correlation function



They are at the end of the exclusion zone, which for high central peak $v \geq 2$ it increases with $\mathcal{v}$ roughly linearly

$$
R_{\text {max }} \approx(0.9+v / 5) R_{p} \quad R_{\max }=1.2,1.5,1.8 R_{p}, \quad v=2,3,4
$$

## Global connectivity for GRF: theory

## Estimating $\kappa$ by counting saddles to the next peak

From the Peak-Saddle correlation function

$\kappa(\nu)=\bar{n}_{\text {sad }} \int_{0}^{R_{\mathrm{pp}}} \mathrm{d}^{D} r\left(1+\xi_{\mathrm{pk}-\mathrm{sad}}(r, \nu)\right)$


Number of saddles to distance $R_{\text {max }}$ conditional on the height $\mathcal{v}$ of the peak translates to peak connectivity $\langle\boldsymbol{\kappa} \mid \boldsymbol{v}\rangle$

Subtle interplay between clustering of saddles and zone of influence of peak.

## Connectivity: evolution with cosmic time

## Connectivity of a non-Gaussian field differ from the Gaussian

- In cosmological simulations, as density becomes more non-Gaussian, connectivity of the Cosmic Web decreases
- This leads to model dependent history of the connectivity at different redshifts.



Filaments merge in a cosmology-dependent way!

## Theory: evolution with cosmic time

Non-Gaussian 3D Extrema Counts (Gay et al, 2011)

$$
\left\langle n_{\mp--}\right\rangle=\frac{29 \sqrt{15} \mp 18 \sqrt{10}}{1800 \pi^{2} R_{*}^{3}}+\frac{5 \sqrt{5}}{24 \pi^{2} \sqrt{6 \pi} R_{*}^{3}}(\langle q^{2} \overbrace{1}\rangle-\frac{8}{21}\left\langle J_{1}^{3}\right\rangle+\frac{10}{21}\left\langle J_{1} J_{2}\right\rangle)
$$



$$
\langle\kappa\rangle=\kappa^{\mathrm{G}}\left(1+\sum_{i \geqslant 1} \kappa^{(i)} \sigma_{0}^{i}\right)
$$

With Gram Charlier expansion, prediction at arbitrary order

At $\sigma \approx 0.2$

$$
\frac{\left\langle n_{\text {saddle }}\right\rangle}{\left\langle n_{\text {peak }}\right\rangle} \approx 2.8 \quad \Rightarrow\langle\kappa\rangle \approx 5.6
$$

## Local multiplicity and bifurcation points

For galaxy formation, what matters most is how many filament connect locally onto a galaxy. At small enough scale, a peak is always ellipsoidal so that only two branches of filament stick out. Then those branches bifurcate. Some bifurcations appear so close to the peak that they are physically irrelevant. Hence we will define the multiplicity as the local number of filaments.


## Local multiplicity and bifurcation points

For galaxy formation, what matters most is how many filament connect locally onto a galaxy. At small enough scale, a peak is always ellipsoidal so that only two branches of filament stick out. Then those branches bifurcate. Some bifurcations appear so close to the peak that they are physically irrelevant. Hence we will define the multiplicity as the local number of filaments.

$$
\begin{aligned}
& \mu=\kappa-n_{\text {bifurcations }} \\
& \mu \approx 3 \quad \text { in } 2 \mathrm{D} \\
& \mu \approx 4 \quad \text { in } 3 \mathrm{D}
\end{aligned}
$$



$$
2 \mathrm{D}:\langle\mu\rangle=3
$$

## Local multiplicity and bifurcation points

For galaxy formation, what matters most is how many filament connect locally onto a galaxy. At small enough scale, a peak is always ellipsoidal so that only two branches of filament stick out. Then those branches bifurcate. Some bifurcations appear so close to the peak that they are physically irrelevant. Hence we will define the multiplicity as the local number of filaments.

$$
\begin{aligned}
& \mu=\kappa-n_{\text {bifurcations }} \\
& \mu \approx 3 \quad \text { in 2D } \\
& \mu \approx 4 \quad \text { in 3D }
\end{aligned}
$$



## Local multiplicity

The denser the environment, the higher the multiplicity (e.g. bringing less coherent angular momentum and generating more ellipsoidal galaxies)


## Local multiplicity: towards a theoretical prediction

Let us count filament crossings at a sphere of radius $\mathbf{R}$ around the central peak...


## Local multiplicity: towards a theoretical prediction



## Local multiplicity: towards a theoretical prediction

## Not all filaments are equally prominent. Counting important

 onesTypically, two to three dense filaments dominate and therefore define a plane of accretion....


## Local multiplicity: towards a theoretical prediction




Typically, two to three dense filaments dominate and therefore define a plane of accretion... in agreement with numerical simulation (Danovich+12) and observations of plane of satellites around galaxies.

## Application: preserving cosmic connectivity

## On the connectivity of halos

Compute frequency of filament merger compared to halo merger in the vicinity of a halo merger event $\xi_{\mathrm{hf}}(r) / \xi_{\mathrm{hh}}(r)$.


Radius

$$
1+\xi_{p}=\frac{\left\langle\operatorname{cond}_{p}(\mathbf{x}) \operatorname{cond}_{p}(\mathbf{y})\right\rangle}{\left\langle\operatorname{cond}_{p}(\mathbf{x})\right\rangle^{2}}, 1+\xi_{f}=\frac{\left\langle\operatorname{cond}_{f}(\mathbf{x}) \operatorname{cond}_{p}(\mathbf{y})\right\rangle}{\left\langle\operatorname{cond}_{f}(\mathbf{x})\right\rangle\left\langle\operatorname{cond}_{p}(\mathbf{x})\right\rangle}
$$

## Upshot

Connectivity is a packaging pb because of exclusion

- Connectivity = number of filament connected

$$
\text { K=4 in 2D } k=6.11 \text { in 3D (for GRF) }
$$

- Mutiplicity = number of local filament connected
> $\mu \sim 3$ in 2D $\mu \sim 4$ in 3D
- Both can be predicted from first principle
> Hence useful for cosmology \& galaxy formation


## Upshot

- Set of critical events = useful topological compression of ICs
- impacts 'dressed' mergers: ML on morphology?
(i.e. cosmic evolution of peaks and their filaments and walls).
- Clustering of filament disappearance is consistent with preserving connectivity of peaks as they merge:
- the rarer the peak the higher the rate of filaments merging.
- Rate of wall disappearance = dark energy probe, depend on the growth rate of structure and o2/б1б3.


## Conclusion

- Peak and constrained random field theories are paramount to understand the birth and growth of the cosmic web
- Many analytical results can be obtained in the weakly non-linear regime
, The topology and geometry of the cosmic web carries important cosmological information and is key for galaxy evolution.
- In particular, we now have a precise understanding of the connectivity of the cosmic web (the cosmic crystal) and its evolution through statistics of critical events.


## IMHO of interest beyond cosmology

## Application: impact of AGN feedback?

## X -Ray detected groups


filaments from galaxy distribution


Elise Darragh-Ford

- Laigle, Gozaliasl, Pichon, Devriendt, Slyz et al.

Galaxy distribution, gas density - Horizon-AGN simulation (Duboi s+14)

## Filament extraction in 2D around groups

## COSMOS

reference photometric field
1 million of galaxies



Redshift and mass range constrained by galaxy photometric properties:
We work in $0.5<z<1.2$ with all galaxies more massive than $10^{10}$ solar mass

## Filament extraction in 2D around groups



Redshift and mass range constrained by galaxy photometric properties:
We work in $0.5<z<1.2$ with all galaxies more massive than $10^{10}$ solar mass

## Group Multiplicity

## Measuring connectivity with photometric filaments



BGG: brightest group galaxy

## Group Multiplicity in Horizon-AGN

## Testing the impact of photometric uncertainties



## Group Multiplicity in Horizon-AGN

Testing the impact of photometric uncertainties

Hydrodynamical simulation Horizon-AGN Dubois+14


Mock observation generation (photometry, photo-z, photometric masses)

Adding errors
(including systematics)


Mock image


Virtually observed skeleton

## Group Multiplicity

## Measuring connectivity with photometric filaments

## photo-z uncertainties decrease connectivity

Hz-AGN connectivity


COSMOS connectivity


# Group Multiplicity 

Impact of connectivity on group properties

peak height $y$

Mean connectivity increases with halo/BGG mass

Theoretical predictions from
Codis et al. 2018



## The impact of Multiplicity on BGG properties

## Interpretation from Horizon-AGN simulation

Horizon-noAGN


Horizon-AGN


## Group Multiplicity

## Impact of connectivity on group properties

Darragh-Ford, Laigle, et al in prep

HORIZON-AGN simulation result:
At a given halo mass, "AGN quenching efficiency" is higher at higher connectivity



- Connectivity: proxy for mass of accreted matter; more accretion $\rightarrow$ higher feedback?
- higher connectivity $\rightarrow$ accretion more isotropic


## Group Multiplicity

## Impact of connectivity on group properties

Darragh-Ford, Laigle, et al in prep

HORIZON-AGN simulation result:
At a given halo mass, "AGN quenching efficiency" is higher at higher connectivity



- Connectivity: proxy for mass of accreted matter; more accretion $\rightarrow$ higher feedback?
- higher connectivity $\rightarrow$ accretion more isotropic


## Connectivity: measuring DE?

## Generalized geometrical $\mathrm{S}_{\mathrm{n}}$

Purpose: Express the invariant cumulants in terms of $\sigma$ ( hence $\mathrm{D}(\mathrm{z})$ ) through Perturbation theory e.g. $\left\langle J_{1} x\right\rangle=$ function $(\sigma)$

$$
F_{2}\left(\mathbf{k}_{\mathbf{1}}, \mathbf{k}_{\mathbf{2}}\right)=\frac{5}{7}+\frac{\mathbf{k}_{\mathbf{1}} \cdot \mathbf{k}_{\mathbf{2}}}{k_{1}^{2}}+\frac{2}{7} \frac{\left(\mathbf{k}_{\mathbf{1}} \cdot \mathbf{k}_{\mathbf{2}}\right)^{2}}{k_{1}^{2} k_{2}^{2}} \Longrightarrow \mathcal{F}_{\alpha, \beta, \gamma}\left(\mathbf{k}_{\mathbf{1}}, \mathbf{k}_{\mathbf{2}}\right)=F_{2}\left(\mathbf{k}_{\mathbf{1}}, \mathbf{k}_{\mathbf{2}}\right) \mathcal{G}_{\alpha, \beta, \gamma}\left(\mathbf{k}_{\mathbf{1}}, \mathbf{k}_{\mathbf{2}}\right)
$$

GRAVITY
Geometric shape factor $=$ powers of $k$


$$
\delta^{(n)}\left(\overrightarrow{k^{2}}\right)=\int d^{3} \overrightarrow{k_{1}} \ldots d^{3} \overrightarrow{k_{n}} \delta^{D}\left(\vec{k}-\left(\overrightarrow{k_{1}}+\cdots+\overrightarrow{k_{n}}\right)\right) F_{n}\left(\overrightarrow{k_{1}}, \ldots, \overrightarrow{k_{n}}\right) \delta^{(1)}\left(\overrightarrow{k_{1}}\right) \ldots \delta^{(1)}\left(\overrightarrow{k_{n}}\right),
$$

## Generalized geometrical $\mathrm{S}_{\mathrm{n}}$

Purpose: Express the invariant cumulants in terms of $\sigma$ ( hence $\mathrm{D}(\mathrm{z})$ ) through Perturbation theory egg. $\left\langle J_{1} x\right\rangle=$ function $(\sigma)$

$$
F_{2}\left(\mathbf{k}_{\mathbf{1}}, \mathbf{k}_{\mathbf{2}}\right)=\frac{5}{7}+\frac{\mathbf{k}_{\mathbf{1}} \cdot \mathbf{k}_{\mathbf{2}}}{k_{1}^{2}}+\frac{2}{7} \frac{\left(\mathbf{k}_{\mathbf{1}} \cdot \mathbf{k}_{\mathbf{2}}\right)^{2}}{k_{1}^{2} k_{2}^{2}} \Longrightarrow \mathcal{F}_{\alpha, \beta, \gamma}\left(\mathbf{k}_{\mathbf{1}}, \mathbf{k}_{\mathbf{2}}\right)=F_{2}\left(\mathbf{k}_{\mathbf{1}}, \mathbf{k}_{\mathbf{2}}\right) \mathcal{G}_{\alpha, \beta, \gamma}\left(\mathbf{k}_{\mathbf{1}}, \mathbf{k}_{\mathbf{2}}\right)
$$

## GRAVITY

Geometric shape factor $=$ powers of $k$

## power spectrum index



$$
\frac{1}{\sigma}\left\langle x^{3}\right\rangle=3{ }_{2} F_{1}\left(\frac{3+n}{2}, \frac{3+n}{2}, \frac{3}{2}, \frac{1}{4}\right)-\frac{1}{7}(8+7 n)_{2} F_{1}\left(\frac{3+n}{2}, \frac{3+n}{2}, \frac{5}{2}, \frac{1}{4}\right)
$$

skewness of field

## Generalized geometrical $\mathrm{S}_{\mathrm{n}}$

Purpose: Express the invariant cumulants in terms of $\sigma$ ( hence $\mathrm{D}(\mathrm{z})$ ) through Perturbation theory $e . g . \quad\left\langle J_{1} x\right\rangle=$ function $(\sigma)$
$F_{2}\left(\mathbf{k}_{\mathbf{1}}, \mathbf{k}_{\mathbf{2}}\right)=\frac{5}{7}+\frac{\mathbf{k}_{\mathbf{1}} \cdot \mathbf{k}_{\mathbf{2}}}{k_{1}{ }^{2}}+\frac{2}{7} \frac{\left(\mathbf{k}_{\mathbf{1}} \cdot \mathbf{k}_{\mathbf{2}}\right)^{2}}{k_{1}{ }^{2} \mathrm{k}_{2}{ }^{2}} \Longrightarrow \mathcal{F}_{\alpha, \beta, \gamma}\left(\mathbf{k}_{\mathbf{1}}, \mathbf{k}_{\mathbf{2}}\right)=F_{2}\left(\mathbf{k}_{\mathbf{1}}, \mathbf{k}_{\mathbf{2}}\right) \mathcal{G}_{\alpha, \beta, \gamma}\left(\mathbf{k}_{\mathbf{1}}, \mathbf{k}_{\mathbf{2}}\right)$

## GRAVITY

Geometric shape factor $=$ powers of $k$
power spectrum index


$$
\frac{1}{\sigma}\left\langle x^{3}\right\rangle=3{ }_{2} F_{1}\left(\frac{3+n}{2}, \frac{3+n}{2}, \frac{3}{2}, \frac{1}{4}\right)-\frac{1}{7}(8+7 n)_{2} F_{1}\left(\frac{3+n}{2}, \frac{3+n}{2}, \frac{5}{2}, \frac{1}{4}\right)
$$

skewness of field

3pt field- gradient cumulant

$$
\mathrm{n}=-3: \quad \frac{1}{\sigma}\left\langle x^{3}\right\rangle=\frac{34}{7} \Longrightarrow \frac{1}{\sigma}\left\langle x x_{1}^{2}\right\rangle=\frac{34}{7} \frac{2}{3^{2}}
$$

## Generalized geometrical $S_{n}$

Purpose: Express the invariant cumulants in terms of $\sigma$ ( hence $\mathrm{D}(\mathrm{z})$ ) through Perturbation theory $e . g . \quad\left\langle J_{1} x\right\rangle=$ function $(\sigma)$
$F_{2}\left(\mathbf{k}_{1}, \mathbf{k}_{\mathbf{2}}\right)=\frac{5}{7}+\frac{\mathbf{k}_{\mathbf{1}} \cdot \mathbf{k}_{2}}{k_{1}{ }^{2}}+\frac{2}{7} \frac{\left(\mathbf{k}_{\mathbf{1}} \cdot \mathbf{k}_{2}\right)^{2}}{k_{1}{ }^{2} k_{2}{ }^{2}} \Longrightarrow \mathcal{F}_{\alpha, \beta, \gamma}\left(\mathbf{k}_{\mathbf{1}}, \mathbf{k}_{\mathbf{2}}\right)=F_{2}\left(\mathbf{k}_{1}, \mathbf{k}_{\mathbf{2}}\right) \mathcal{G}_{\alpha, \beta, \gamma}\left(\mathbf{k}_{1}, \mathbf{k}_{\mathbf{2}}\right)$

## GRAVITY

Geometric shape factor $=$ powers of $k$
power spectrum index


$$
\frac{1}{\sigma}\left\langle x^{3}\right\rangle=3_{2} F_{1}\left(\frac{3+n}{2}, \frac{3+n}{2}, \frac{3}{2}, \frac{1}{4}\right)-\frac{1}{7}(8+7 n)_{2} F_{1}\left(\frac{3+n}{2}, \frac{3+n}{2}, \frac{5}{2}, \frac{1}{4}\right) .
$$

skewness of field

## See also Bouchet for S4

$\frac{1}{\sigma}\left\langle x x_{1}{ }^{2}\right\rangle=\frac{4\left(48+62 n+21 n^{2}\right)}{21 n^{2}}{ }_{2} F_{1}\left(\frac{3+n}{2}, \frac{3+n}{2}, \frac{3}{2}, \frac{1}{4}\right)-\frac{6(3+n)(8+7 n)}{21 n^{2}}{ }_{2} F_{1}\left(\frac{3+n}{2}, \frac{5+n}{2}, \frac{3}{2}, \frac{1}{4}\right)$
3pt field- gradient cumulant

$$
\mathrm{n}=-3: \quad \frac{1}{\sigma}\left\langle x^{3}\right\rangle=\frac{34}{7} \Longrightarrow \frac{1}{\sigma}\left\langle x x_{1}^{2}\right\rangle=\frac{34}{7} \frac{2}{3^{2}}
$$

## Generalized geometrical $\mathrm{S}_{\mathrm{n}}$

Purpose: Express the invariant cumulants in terms of $\sigma$ ( hence $\mathrm{D}(\mathrm{z})$ ) through Perturbation theory egg. $\left\langle J_{1} x\right\rangle=$ function $(\sigma)$


$$
\frac{1}{\sigma}\left\langle x^{3}\right\rangle=3{ }_{2} F_{1}\left(\frac{3+n}{2}, \frac{3+n}{2}, \frac{3}{2}, \frac{1}{4}\right)-\frac{1}{7}(8+7 n)_{2} F_{1}\left(\frac{3+n}{2}, \frac{3+n}{2}, \frac{5}{2}, \frac{1}{4}\right)
$$

skewness of field

$$
\frac{1}{\sigma}\left\langle x x_{1}{ }^{2}\right\rangle=\frac{4\left(48+62 n+21 n^{2}\right)}{21 n^{2}}{ }_{2} F_{1}\left(\frac{3+n}{2}, \frac{3+n}{2}, \frac{3}{2}, \frac{1}{4}\right)-\frac{6(3+n)(8+7 n)}{21 n^{2}}{ }_{2} F_{1}\left(\frac{3+n}{2}, \frac{5+n}{2}, \frac{3}{2}, \frac{1}{4}\right)
$$

3pt field- gradient cumulant

$$
\mathrm{n}=-3: \quad \frac{1}{\sigma}\left\langle x^{3}\right\rangle=\frac{34}{7} \Longrightarrow \frac{1}{\sigma}\left\langle x x_{1}^{2}\right\rangle=\frac{34}{7} \frac{2}{3^{2}}
$$

# Fiducial <br> DE experiment 

- Generate scale invariant ICs
- Evolve them with gravity
- identify critical sets
- compute differential counts
- estimate amplitude of NG distorsion via PT
- deduce geometric critical set $\sigma$



## How is the cosmic web woven?

- Context
- Random fields, Peak theory, critical events
- Cosmic connectivity
- Cosmic multiplicity
, Application: AGN in groups


$$
\left.\frac{\partial^{2} n}{\partial R \partial \nu}\right|_{ \pm}=\frac{3 \sqrt{3}\left(1-\tilde{\gamma}^{2}\right)\left(25 \gamma^{4}+30 \gamma^{2}\left(2 \nu^{2}-1\right)-27\right) R}{20 \sqrt{10} \pi^{5 / 2}\left(9-5 \gamma^{2}\right)^{5 / 2} R_{*}^{3} \tilde{R}^{2}} e^{-\frac{9 \nu^{2}}{2\left(9-5 \gamma^{2}\right)}}
$$



