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ABSTRACT
The cosmological bound objects were considered to form from the local maxima of
cosmological density fluctuations; often assumed to be Gaussian random fields. In
order to study the statistics of the objects with hierarchical merging, we propose the
skeleton tree formalism, which can analytically distinguish the episodic merging and
the continuous accretion in the mass growth processes. The distinction was not clear
in extended Press-Schechter (PS) formalism. The skeleton tree formalism is a natural
extension of the peak theory which is an alternative formalism for the statistics of
the bound objects. The fluctuation field smoothing with Gaussian filter produces the
landscape with adding the extra-dimension of the filter resolution scale to the spatial
coordinate of the original fluctuation. In the landscape, some smoothing peaks are
nesting into the neighboring peaks at a type of critical points called sloping saddles
appears, which can be interpreted as merging events of the objects in the context of
the hierarchical structure formation. The topological properties of the landscape can
be abstracted in skeleton trees, which consist of line process of the smoothing peaks
and the point process of the sloping saddles. According to this abstract topological
picture, in this paper, we present the concept and the basic results of the skeleton tree
formalism to describe (1) the distinction between the accretion and the merger in the
hierarchical structure formation from various initial random Gaussian fields; (2) the
instantaneous number density of the sloping saddles which gives the instantaneous
scale function of the objects with the destruction and reformation in the mergers; (3)
the rates of the destruction, the reformation, and the relative accretion growth; (4)
the self-consistency of the formalism for the statistics of the mass growth processes of
the objects; (5) the mean growth history of the objects at the fixed mass.

Key words: galaxies:clustering – galaxies:formation – cosmology:theory – dark mat-
ter

1 INTRODUCTION

Hierarchical clustering scenario, including the cold dark
matter (CDM) model, may be the most established one
for reconstructing various observational properties in the
cosmological structure from the galaxies to the clusters of
galaxies. Press & Schechter (1974) firstly proposed an ana-
lytical formalism which derives the number density of bound
virialized objects of the mass at any given epoch, with the
assumption that the primordial density fluctuations is ran-
dom Gaussian field. The mass function predicted by the PS
theory shows reasonably the good agreement with N-body
simulations even if it has more low mass objects (e.g. Lacey
& Cole 1994). To reconstruct the observational properties
in theoretical galaxy formation scenario, there are also ap-
proaches which study the history of the mass growth for
bound objects and the characteristic times (e.g. Lacey &

Silk 1991; Kauffmann, White & Guiderdoni 1993; Cole et
al. 1994). Most of them were based on the extended PS for-
malism, which was proposed by Bower (1991) and Bond et
al. (1991). It can derive the number density of objects of a
certain mass at a given time subject to a larger object at a
later time. Using the formalism, Lacey & Cole (1993; LC)
calculated the “merger” rate.

The PS formalism, however, has a limitation for de-
scribing the history of the mass growth about the individual
objects. The “merging process” described with the PS ap-
proach in LC, cannot be interpreted as the same meaning of
the merger in astronomical sense, in which the objects lose
their identity. In the mass growth history for the astronom-
ical objects, the continuous accretion onto a bound object
without the loss of identity has different meanings from the
mass accumulation with the loss of the identity in the ma-
jor merger. The formalism based with the PS approach can-
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Connectivity of the Cosmic Web

Large scale filamentary structure connecting clusters of
galaxies is evident both in data and simulations

Sloan DS Survey Horizon (IAP) project

Context:	geometry	&	Topology

Skeleton & Walls of Horizon-AGN

Geometry of LSS as a probe of cosmology
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Connectivity of the Cosmic Web

Large scale filamentary structure connecting clusters of
galaxies is evident both in data and simulations

Sloan DS Survey Horizon (IAP) project

Context:	feeding	galaxies	via	cold	flows?

Filamentary accretion regulating stellar formation / AGN feedback/AM acquisition
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The skeleton tree formalism
Can we build a merger-tree like structure from the initial conditions?

⇒ Yes! Study the topological structure of the ICs at different scales (Hanami 2001)
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5

Context

Spherical collapse: time-smoothing duality

Understand special events in evolution of cosmic web

The theory of merging structures 3

Figure 3. Spherical averaging as a proxy for time evolution. Physically,
slopping saddles are on the slopes of large peaks which will swallow with
cosmic time neighbouring peaks and their filaments. In some sense, the
joint disappearance of peaks, filaments and walls, is a consequence of
the smoothing process, which washes out concurrently peaks, tunnels and
voids.

2.1 Counting critical events in multi-scale landscape

Following Hanami (2001), the number density of critical events in
position-scale space is given by

@2N
@r3@R

⌘ h�(3)D (r� r0)�D(R�R0)i , (4)

where r0 is a (double) critical point in real space and R0 the scale
at which the two critical points merge. Special points where two
critical points merge as a function of R are called critical events
(the slopping saddles of Hanami), for example a maximum and a
filament-saddle. Equivalently, critical events can be defined as crit-
ical points where one of the eigenvalue of the hessian vanishes,
which is also equivalent to having a vanishing determinant.

Let us therefore first define the determinant of the hessian
d(�) ⌘ det(rr�) = �1�2�3, �1 < �2 < �3 are the eigenval-
ues of rr�. In the following, we will use @

R

to denote derivatives
with respect to R. Since critical events are found where d = 0 and
r� = 0, let us rewrite Equation (4) in terms of the properties of
the field, using the coordinate transformation from r, R to r�, d.
This involves the 4D Jacobian of the transformation1

J(d, �) =

�����
@
R

d ~rd

@
R

~r�T ~r~r�

����� =

�����
@
R

d ~rd

�R~r��T ~r~r�

����� , (5)

using the fact that for a Gaussian filter

@
R

� = �R��, (6)

with � the Laplacian. The fully covariant formulation of the num-
ber density of critical event is then the following

@2N
@r3@R

=

D
J �

(3)
D (r�)�D(d)

E
. (7)

1 Note that the determinant can be developed along the first line or the first
column of the Jacobian matrix to find out – as shown by the simplifications
in the next section – that the final result does not depend on @

R

d.

2.1.1 Expression in the frame of the Hessian

The Jacobian is by construction invariant under rotation, so we can
rewrite it in the frame of the eigenvalues without loss of generality.
Developing d into �3

2x11x22x33, the Jacobian can be rewritten in
coordinate, assuming (arbitrarily) that direction 3 is the degenerate
one. Then

J(d, �)

�1�4
2�3

= |x11x22|
����
@
R

x33 x33i

@
R

x
i

x
ij

���� , (8)

= |x11x22|

��������

@
R

x33 x133 x233 x333

@
R

x1 x11 0 0

@
R

x2 0 x22 0

@
R

x3 0 0 0

��������
, (9)

= |x11x22|2|@R

x3||x333|, (10)

where the factorisation with |x11x22| along the first line in equa-
tion (8) is consequence of x33 being zero – which also nulls the
last component of equation (9), while equation (10) follows by ex-
panding the determinant over the last line of (9). Using equation (6)
again, we can rewrite the number density of slopping saddle at
height ⌫ as2

@4N
@r3@R

=

R
˜R

D
|x11x22||x3ii||x333|�(3)D (x

i

)�D(x33)

E

R3
⇤ ˜R

, (11)

[� its factorises in odd and even doesn’t it?] where R⇤ and ˜R are
the typical inter critical point separation and inter inflection point
separation defined in equation (A1). Indeed, the novelty of (12)
w.r.t. the classical BBKS formula is the weight |x3ii||x333| which
requires the knowledge of the statistics of the 3rd order derivative
of the field. Note that R is measured in units of ˜R ⇠ 3

4
R⇤ (for

n ⇠ �2, see Appendix A). Let us call n = @N/@r3 the volume
density of doubly critical points. We can forget about the explicit
dependency over r as the field is assumed to be stationary. Intro-
ducing �D(x � ⌫) in the expectation of equation (11) allows us to
write the density of doubly critical points

@2n

@R@⌫
=

@5N
@r3@R@⌫

, (12)

=

R
˜R

D
|x11x22||x3ii||x333|�(3)D (x

i

)�D(x33)�D(x� ⌫)
E

R3
⇤ ˜R

,

The expectations in equation (12) can be evaluated with
the joint statistics of the field and its successive derivatives,
P(x, x

i

, x
ij

, x
ijk

) which involves 20 variables, see Appendix B.
Since the integrant is mute w.r.t. to x3ij for i 6= j and x

ijk

for
i 6= 3 the marginalisation over these variable is straightforward.
When removing the absolute value in equation (12), the expecta-
tion can be evaluated symbolically and reads

@2n

@R@⌫

���
±
=

3

p
3(1��̃2

)(25�4
+30�2

(2⌫2�1)�27)R

20

p
10⇡5/2

(9� 5�2
)

5/2R3
⇤ ˜R2

e
� 9⌫2

2(9�5�2) .

(13)
This corresponds to the alternate sum of critical events. [� does
this have a deep topological meaning cf genus? Via the topology
of the excursion set in in space-scale? ] It is plotted in Figure 4 as
a function of ⌫ for different values of n

s

. Note that @2N/@r3@R
scale like 1/R4 but is also a function of R via n

s

through

3 + n
s

(R) = �@ log �2
0

@ logR
, (14)

2 One factor of |x11x22| drops between equation (10) and (12) because
of the Dirac of d in equation (7).
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The expectations in equation (12) can be evaluated with
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for
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Change in excursion's topology impacts galaxy formation 

Context
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The theory of merging structures 3

Figure 3. Spherical averaging as a proxy for time evolution. Physically,
slopping saddles are on the slopes of large peaks which will swallow with
cosmic time neighbouring peaks and their filaments. In some sense, the
joint disappearance of peaks, filaments and walls, is a consequence of
the smoothing process, which washes out concurrently peaks, tunnels and
voids.

2.1 Counting critical events in multi-scale landscape

Following Hanami (2001), the number density of critical events in
position-scale space is given by

@2N
@r3@R

⌘ h�(3)D (r� r0)�D(R�R0)i , (4)

where r0 is a (double) critical point in real space and R0 the scale
at which the two critical points merge. Special points where two
critical points merge as a function of R are called critical events
(the slopping saddles of Hanami), for example a maximum and a
filament-saddle. Equivalently, critical events can be defined as crit-
ical points where one of the eigenvalue of the hessian vanishes,
which is also equivalent to having a vanishing determinant.

Let us therefore first define the determinant of the hessian
d(�) ⌘ det(rr�) = �1�2�3, �1 < �2 < �3 are the eigenval-
ues of rr�. In the following, we will use @

R

to denote derivatives
with respect to R. Since critical events are found where d = 0 and
r� = 0, let us rewrite Equation (4) in terms of the properties of
the field, using the coordinate transformation from r, R to r�, d.
This involves the 4D Jacobian of the transformation1

J(d, �) =

�����
@
R

d ~rd

@
R

~r�T ~r~r�

����� =

�����
@
R

d ~rd

�R~r��T ~r~r�

����� , (5)

using the fact that for a Gaussian filter

@
R

� = �R��, (6)

with � the Laplacian. The fully covariant formulation of the num-
ber density of critical event is then the following

@2N
@r3@R

=

D
J �

(3)
D (r�)�D(d)

E
. (7)

1 Note that the determinant can be developed along the first line or the first
column of the Jacobian matrix to find out – as shown by the simplifications
in the next section – that the final result does not depend on @

R

d.

2.1.1 Expression in the frame of the Hessian

The Jacobian is by construction invariant under rotation, so we can
rewrite it in the frame of the eigenvalues without loss of generality.
Developing d into �3

2x11x22x33, the Jacobian can be rewritten in
coordinate, assuming (arbitrarily) that direction 3 is the degenerate
one. Then

J(d, �)

�1�4
2�3

= |x11x22|
����
@
R

x33 x33i

@
R

x
i

x
ij

���� , (8)

= |x11x22|

��������

@
R

x33 x133 x233 x333

@
R

x1 x11 0 0

@
R

x2 0 x22 0

@
R

x3 0 0 0

��������
, (9)

= |x11x22|2|@R

x3||x333|, (10)

where the factorisation with |x11x22| along the first line in equa-
tion (8) is consequence of x33 being zero – which also nulls the
last component of equation (9), while equation (10) follows by ex-
panding the determinant over the last line of (9). Using equation (6)
again, we can rewrite the number density of slopping saddle at
height ⌫ as2

@4N
@r3@R

=

R
˜R

D
|x11x22||x3ii||x333|�(3)D (x

i

)�D(x33)

E

R3
⇤ ˜R

, (11)

[� its factorises in odd and even doesn’t it?] where R⇤ and ˜R are
the typical inter critical point separation and inter inflection point
separation defined in equation (A1). Indeed, the novelty of (12)
w.r.t. the classical BBKS formula is the weight |x3ii||x333| which
requires the knowledge of the statistics of the 3rd order derivative
of the field. Note that R is measured in units of ˜R ⇠ 3

4
R⇤ (for

n ⇠ �2, see Appendix A). Let us call n = @N/@r3 the volume
density of doubly critical points. We can forget about the explicit
dependency over r as the field is assumed to be stationary. Intro-
ducing �D(x � ⌫) in the expectation of equation (11) allows us to
write the density of doubly critical points

@2n

@R@⌫
=

@5N
@r3@R@⌫

, (12)

=

R
˜R

D
|x11x22||x3ii||x333|�(3)D (x

i

)�D(x33)�D(x� ⌫)
E

R3
⇤ ˜R

,

The expectations in equation (12) can be evaluated with
the joint statistics of the field and its successive derivatives,
P(x, x

i

, x
ij

, x
ijk

) which involves 20 variables, see Appendix B.
Since the integrant is mute w.r.t. to x3ij for i 6= j and x

ijk

for
i 6= 3 the marginalisation over these variable is straightforward.
When removing the absolute value in equation (12), the expecta-
tion can be evaluated symbolically and reads

@2n

@R@⌫

���
±
=

3

p
3(1��̃2

)(25�4
+30�2

(2⌫2�1)�27)R

20

p
10⇡5/2

(9� 5�2
)

5/2R3
⇤ ˜R2

e
� 9⌫2

2(9�5�2) .

(13)
This corresponds to the alternate sum of critical events. [� does
this have a deep topological meaning cf genus? Via the topology
of the excursion set in in space-scale? ] It is plotted in Figure 4 as
a function of ⌫ for different values of n

s

. Note that @2N/@r3@R
scale like 1/R4 but is also a function of R via n

s

through

3 + n
s

(R) = �@ log �2
0

@ logR
, (14)

2 One factor of |x11x22| drops between equation (10) and (12) because
of the Dirac of d in equation (7).
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Figure 3. Spherical averaging as a proxy for time evolution. Physically,
slopping saddles are on the slopes of large peaks which will swallow with
cosmic time neighbouring peaks and their filaments. In some sense, the
joint disappearance of peaks, filaments and walls, is a consequence of
the smoothing process, which washes out concurrently peaks, tunnels and
voids.
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R

to denote derivatives
with respect to R. Since critical events are found where d = 0 and
r� = 0, let us rewrite Equation (4) in terms of the properties of
the field, using the coordinate transformation from r, R to r�, d.
This involves the 4D Jacobian of the transformation1

J(d, �) =
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with � the Laplacian. The fully covariant formulation of the num-
ber density of critical event is then the following
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1 Note that the determinant can be developed along the first line or the first
column of the Jacobian matrix to find out – as shown by the simplifications
in the next section – that the final result does not depend on @

R

d.

2.1.1 Expression in the frame of the Hessian

The Jacobian is by construction invariant under rotation, so we can
rewrite it in the frame of the eigenvalues without loss of generality.
Developing d into �3

2x11x22x33, the Jacobian can be rewritten in
coordinate, assuming (arbitrarily) that direction 3 is the degenerate
one. Then
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where the factorisation with |x11x22| along the first line in equa-
tion (8) is consequence of x33 being zero – which also nulls the
last component of equation (9), while equation (10) follows by ex-
panding the determinant over the last line of (9). Using equation (6)
again, we can rewrite the number density of slopping saddle at
height ⌫ as2
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[� its factorises in odd and even doesn’t it?] where R⇤ and ˜R are
the typical inter critical point separation and inter inflection point
separation defined in equation (A1). Indeed, the novelty of (12)
w.r.t. the classical BBKS formula is the weight |x3ii||x333| which
requires the knowledge of the statistics of the 3rd order derivative
of the field. Note that R is measured in units of ˜R ⇠ 3

4
R⇤ (for

n ⇠ �2, see Appendix A). Let us call n = @N/@r3 the volume
density of doubly critical points. We can forget about the explicit
dependency over r as the field is assumed to be stationary. Intro-
ducing �D(x � ⌫) in the expectation of equation (11) allows us to
write the density of doubly critical points
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The expectations in equation (12) can be evaluated with
the joint statistics of the field and its successive derivatives,
P(x, x

i

, x
ij

, x
ijk

) which involves 20 variables, see Appendix B.
Since the integrant is mute w.r.t. to x3ij for i 6= j and x

ijk

for
i 6= 3 the marginalisation over these variable is straightforward.
When removing the absolute value in equation (12), the expecta-
tion can be evaluated symbolically and reads
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(13)
This corresponds to the alternate sum of critical events. [� does
this have a deep topological meaning cf genus? Via the topology
of the excursion set in in space-scale? ] It is plotted in Figure 4 as
a function of ⌫ for different values of n

s

. Note that @2N/@r3@R
scale like 1/R4 but is also a function of R via n

s

through

3 + n
s

(R) = �@ log �2
0

@ logR
, (14)

2 One factor of |x11x22| drops between equation (10) and (12) because
of the Dirac of d in equation (7).
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The theory of merging structures 3

Figure 3. Spherical averaging as a proxy for time evolution. Physically,
slopping saddles are on the slopes of large peaks which will swallow with
cosmic time neighbouring peaks and their filaments. In some sense, the
joint disappearance of peaks, filaments and walls, is a consequence of
the smoothing process, which washes out concurrently peaks, tunnels and
voids.

2.1 Counting critical events in multi-scale landscape

Following Hanami (2001), the number density of critical events in
position-scale space is given by

@2N
@r3@R

⌘ h�(3)D (r� r0)�D(R�R0)i , (4)

where r0 is a (double) critical point in real space and R0 the scale
at which the two critical points merge. Special points where two
critical points merge as a function of R are called critical events
(the slopping saddles of Hanami), for example a maximum and a
filament-saddle. Equivalently, critical events can be defined as crit-
ical points where one of the eigenvalue of the hessian vanishes,
which is also equivalent to having a vanishing determinant.

Let us therefore first define the determinant of the hessian
d(�) ⌘ det(rr�) = �1�2�3, �1 < �2 < �3 are the eigenval-
ues of rr�. In the following, we will use @

R

to denote derivatives
with respect to R. Since critical events are found where d = 0 and
r� = 0, let us rewrite Equation (4) in terms of the properties of
the field, using the coordinate transformation from r, R to r�, d.
This involves the 4D Jacobian of the transformation1
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ber density of critical event is then the following
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1 Note that the determinant can be developed along the first line or the first
column of the Jacobian matrix to find out – as shown by the simplifications
in the next section – that the final result does not depend on @

R

d.

2.1.1 Expression in the frame of the Hessian

The Jacobian is by construction invariant under rotation, so we can
rewrite it in the frame of the eigenvalues without loss of generality.
Developing d into �3

2x11x22x33, the Jacobian can be rewritten in
coordinate, assuming (arbitrarily) that direction 3 is the degenerate
one. Then
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= |x11x22|2|@R

x3||x333|, (10)

where the factorisation with |x11x22| along the first line in equa-
tion (8) is consequence of x33 being zero – which also nulls the
last component of equation (9), while equation (10) follows by ex-
panding the determinant over the last line of (9). Using equation (6)
again, we can rewrite the number density of slopping saddle at
height ⌫ as2
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[� its factorises in odd and even doesn’t it?] where R⇤ and ˜R are
the typical inter critical point separation and inter inflection point
separation defined in equation (A1). Indeed, the novelty of (12)
w.r.t. the classical BBKS formula is the weight |x3ii||x333| which
requires the knowledge of the statistics of the 3rd order derivative
of the field. Note that R is measured in units of ˜R ⇠ 3

4
R⇤ (for

n ⇠ �2, see Appendix A). Let us call n = @N/@r3 the volume
density of doubly critical points. We can forget about the explicit
dependency over r as the field is assumed to be stationary. Intro-
ducing �D(x � ⌫) in the expectation of equation (11) allows us to
write the density of doubly critical points

@2n

@R@⌫
=

@5N
@r3@R@⌫

, (12)

=

R
˜R

D
|x11x22||x3ii||x333|�(3)D (x

i

)�D(x33)�D(x� ⌫)
E

R3
⇤ ˜R

,

The expectations in equation (12) can be evaluated with
the joint statistics of the field and its successive derivatives,
P(x, x
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, x
ij

, x
ijk

) which involves 20 variables, see Appendix B.
Since the integrant is mute w.r.t. to x3ij for i 6= j and x

ijk

for
i 6= 3 the marginalisation over these variable is straightforward.
When removing the absolute value in equation (12), the expecta-
tion can be evaluated symbolically and reads
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This corresponds to the alternate sum of critical events. [� does
this have a deep topological meaning cf genus? Via the topology
of the excursion set in in space-scale? ] It is plotted in Figure 4 as
a function of ⌫ for different values of n

s

. Note that @2N/@r3@R
scale like 1/R4 but is also a function of R via n
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through
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2 One factor of |x11x22| drops between equation (10) and (12) because
of the Dirac of d in equation (7).
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Figure 3. Spherical averaging as a proxy for time evolution. Physically,
slopping saddles are on the slopes of large peaks which will swallow with
cosmic time neighbouring peaks and their filaments. In some sense, the
joint disappearance of peaks, filaments and walls, is a consequence of
the smoothing process, which washes out concurrently peaks, tunnels and
voids.

2.1 Counting critical events in multi-scale landscape

Following Hanami (2001), the number density of critical events in
position-scale space is given by

@2N
@r3@R

⌘ h�(3)D (r� r0)�D(R�R0)i , (4)

where r0 is a (double) critical point in real space and R0 the scale
at which the two critical points merge. Special points where two
critical points merge as a function of R are called critical events
(the slopping saddles of Hanami), for example a maximum and a
filament-saddle. Equivalently, critical events can be defined as crit-
ical points where one of the eigenvalue of the hessian vanishes,
which is also equivalent to having a vanishing determinant.

Let us therefore first define the determinant of the hessian
d(�) ⌘ det(rr�) = �1�2�3, �1 < �2 < �3 are the eigenval-
ues of rr�. In the following, we will use @

R

to denote derivatives
with respect to R. Since critical events are found where d = 0 and
r� = 0, let us rewrite Equation (4) in terms of the properties of
the field, using the coordinate transformation from r, R to r�, d.
This involves the 4D Jacobian of the transformation1

J(d, �) =
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using the fact that for a Gaussian filter
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with � the Laplacian. The fully covariant formulation of the num-
ber density of critical event is then the following
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=

D
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(3)
D (r�)�D(d)

E
. (7)

1 Note that the determinant can be developed along the first line or the first
column of the Jacobian matrix to find out – as shown by the simplifications
in the next section – that the final result does not depend on @

R

d.

2.1.1 Expression in the frame of the Hessian

The Jacobian is by construction invariant under rotation, so we can
rewrite it in the frame of the eigenvalues without loss of generality.
Developing d into �3

2x11x22x33, the Jacobian can be rewritten in
coordinate, assuming (arbitrarily) that direction 3 is the degenerate
one. Then

J(d, �)
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where the factorisation with |x11x22| along the first line in equa-
tion (8) is consequence of x33 being zero – which also nulls the
last component of equation (9), while equation (10) follows by ex-
panding the determinant over the last line of (9). Using equation (6)
again, we can rewrite the number density of slopping saddle at
height ⌫ as2
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[� its factorises in odd and even doesn’t it?] where R⇤ and ˜R are
the typical inter critical point separation and inter inflection point
separation defined in equation (A1). Indeed, the novelty of (12)
w.r.t. the classical BBKS formula is the weight |x3ii||x333| which
requires the knowledge of the statistics of the 3rd order derivative
of the field. Note that R is measured in units of ˜R ⇠ 3

4
R⇤ (for

n ⇠ �2, see Appendix A). Let us call n = @N/@r3 the volume
density of doubly critical points. We can forget about the explicit
dependency over r as the field is assumed to be stationary. Intro-
ducing �D(x � ⌫) in the expectation of equation (11) allows us to
write the density of doubly critical points
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The expectations in equation (12) can be evaluated with
the joint statistics of the field and its successive derivatives,
P(x, x
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, x
ij

, x
ijk

) which involves 20 variables, see Appendix B.
Since the integrant is mute w.r.t. to x3ij for i 6= j and x

ijk

for
i 6= 3 the marginalisation over these variable is straightforward.
When removing the absolute value in equation (12), the expecta-
tion can be evaluated symbolically and reads
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This corresponds to the alternate sum of critical events. [� does
this have a deep topological meaning cf genus? Via the topology
of the excursion set in in space-scale? ] It is plotted in Figure 4 as
a function of ⌫ for different values of n
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scale like 1/R4 but is also a function of R via n
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through
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2 One factor of |x11x22| drops between equation (10) and (12) because
of the Dirac of d in equation (7).
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Figure 3. Spherical averaging as a proxy for time evolution. Physically,
slopping saddles are on the slopes of large peaks which will swallow with
cosmic time neighbouring peaks and their filaments. In some sense, the
joint disappearance of peaks, filaments and walls, is a consequence of
the smoothing process, which washes out concurrently peaks, tunnels and
voids.

2.1 Counting critical events in multi-scale landscape

Following Hanami (2001), the number density of critical events in
position-scale space is given by

@2N
@r3@R

⌘ h�(3)D (r� r0)�D(R�R0)i , (4)

where r0 is a (double) critical point in real space and R0 the scale
at which the two critical points merge. Special points where two
critical points merge as a function of R are called critical events
(the slopping saddles of Hanami), for example a maximum and a
filament-saddle. Equivalently, critical events can be defined as crit-
ical points where one of the eigenvalue of the hessian vanishes,
which is also equivalent to having a vanishing determinant.

Let us therefore first define the determinant of the hessian
d(�) ⌘ det(rr�) = �1�2�3, �1 < �2 < �3 are the eigenval-
ues of rr�. In the following, we will use @

R

to denote derivatives
with respect to R. Since critical events are found where d = 0 and
r� = 0, let us rewrite Equation (4) in terms of the properties of
the field, using the coordinate transformation from r, R to r�, d.
This involves the 4D Jacobian of the transformation1
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ber density of critical event is then the following
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1 Note that the determinant can be developed along the first line or the first
column of the Jacobian matrix to find out – as shown by the simplifications
in the next section – that the final result does not depend on @
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d.

2.1.1 Expression in the frame of the Hessian

The Jacobian is by construction invariant under rotation, so we can
rewrite it in the frame of the eigenvalues without loss of generality.
Developing d into �3

2x11x22x33, the Jacobian can be rewritten in
coordinate, assuming (arbitrarily) that direction 3 is the degenerate
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where the factorisation with |x11x22| along the first line in equa-
tion (8) is consequence of x33 being zero – which also nulls the
last component of equation (9), while equation (10) follows by ex-
panding the determinant over the last line of (9). Using equation (6)
again, we can rewrite the number density of slopping saddle at
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separation defined in equation (A1). Indeed, the novelty of (12)
w.r.t. the classical BBKS formula is the weight |x3ii||x333| which
requires the knowledge of the statistics of the 3rd order derivative
of the field. Note that R is measured in units of ˜R ⇠ 3

4
R⇤ (for

n ⇠ �2, see Appendix A). Let us call n = @N/@r3 the volume
density of doubly critical points. We can forget about the explicit
dependency over r as the field is assumed to be stationary. Intro-
ducing �D(x � ⌫) in the expectation of equation (11) allows us to
write the density of doubly critical points
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The expectations in equation (12) can be evaluated with
the joint statistics of the field and its successive derivatives,
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) which involves 20 variables, see Appendix B.
Since the integrant is mute w.r.t. to x3ij for i 6= j and x
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i 6= 3 the marginalisation over these variable is straightforward.
When removing the absolute value in equation (12), the expecta-
tion can be evaluated symbolically and reads
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This corresponds to the alternate sum of critical events. [� does
this have a deep topological meaning cf genus? Via the topology
of the excursion set in in space-scale? ] It is plotted in Figure 4 as
a function of ⌫ for different values of n

s

. Note that @2N/@r3@R
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Figure 3. Spherical averaging as a proxy for time evolution. Physically,
slopping saddles are on the slopes of large peaks which will swallow with
cosmic time neighbouring peaks and their filaments. In some sense, the
joint disappearance of peaks, filaments and walls, is a consequence of
the smoothing process, which washes out concurrently peaks, tunnels and
voids.

2.1 Counting critical events in multi-scale landscape

Following Hanami (2001), the number density of critical events in
position-scale space is given by

@2N
@r3@R

⌘ h�(3)D (r� r0)�D(R�R0)i , (4)

where r0 is a (double) critical point in real space and R0 the scale
at which the two critical points merge. Special points where two
critical points merge as a function of R are called critical events
(the slopping saddles of Hanami), for example a maximum and a
filament-saddle. Equivalently, critical events can be defined as crit-
ical points where one of the eigenvalue of the hessian vanishes,
which is also equivalent to having a vanishing determinant.

Let us therefore first define the determinant of the hessian
d(�) ⌘ det(rr�) = �1�2�3, �1 < �2 < �3 are the eigenval-
ues of rr�. In the following, we will use @

R

to denote derivatives
with respect to R. Since critical events are found where d = 0 and
r� = 0, let us rewrite Equation (4) in terms of the properties of
the field, using the coordinate transformation from r, R to r�, d.
This involves the 4D Jacobian of the transformation1
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1 Note that the determinant can be developed along the first line or the first
column of the Jacobian matrix to find out – as shown by the simplifications
in the next section – that the final result does not depend on @
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d.

2.1.1 Expression in the frame of the Hessian

The Jacobian is by construction invariant under rotation, so we can
rewrite it in the frame of the eigenvalues without loss of generality.
Developing d into �3
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where the factorisation with |x11x22| along the first line in equa-
tion (8) is consequence of x33 being zero – which also nulls the
last component of equation (9), while equation (10) follows by ex-
panding the determinant over the last line of (9). Using equation (6)
again, we can rewrite the number density of slopping saddle at
height ⌫ as2
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[� its factorises in odd and even doesn’t it?] where R⇤ and ˜R are
the typical inter critical point separation and inter inflection point
separation defined in equation (A1). Indeed, the novelty of (12)
w.r.t. the classical BBKS formula is the weight |x3ii||x333| which
requires the knowledge of the statistics of the 3rd order derivative
of the field. Note that R is measured in units of ˜R ⇠ 3

4
R⇤ (for

n ⇠ �2, see Appendix A). Let us call n = @N/@r3 the volume
density of doubly critical points. We can forget about the explicit
dependency over r as the field is assumed to be stationary. Intro-
ducing �D(x � ⌫) in the expectation of equation (11) allows us to
write the density of doubly critical points
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The expectations in equation (12) can be evaluated with
the joint statistics of the field and its successive derivatives,
P(x, x

i

, x
ij

, x
ijk

) which involves 20 variables, see Appendix B.
Since the integrant is mute w.r.t. to x3ij for i 6= j and x

ijk

for
i 6= 3 the marginalisation over these variable is straightforward.
When removing the absolute value in equation (12), the expecta-
tion can be evaluated symbolically and reads
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This corresponds to the alternate sum of critical events. [� does
this have a deep topological meaning cf genus? Via the topology
of the excursion set in in space-scale? ] It is plotted in Figure 4 as
a function of ⌫ for different values of n

s

. Note that @2N/@r3@R
scale like 1/R4 but is also a function of R via n

s

through

3 + n
s

(R) = �@ log �2
0

@ logR
, (14)

2 One factor of |x11x22| drops between equation (10) and (12) because
of the Dirac of d in equation (7).
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Figure 3. Spherical averaging as a proxy for time evolution. Physically,
slopping saddles are on the slopes of large peaks which will swallow with
cosmic time neighbouring peaks and their filaments. In some sense, the
joint disappearance of peaks, filaments and walls, is a consequence of
the smoothing process, which washes out concurrently peaks, tunnels and
voids.

2.1 Counting critical events in multi-scale landscape

Following Hanami (2001), the number density of critical events in
position-scale space is given by
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⌘ h�(3)D (r� r0)�D(R�R0)i , (4)

where r0 is a (double) critical point in real space and R0 the scale
at which the two critical points merge. Special points where two
critical points merge as a function of R are called critical events
(the slopping saddles of Hanami), for example a maximum and a
filament-saddle. Equivalently, critical events can be defined as crit-
ical points where one of the eigenvalue of the hessian vanishes,
which is also equivalent to having a vanishing determinant.

Let us therefore first define the determinant of the hessian
d(�) ⌘ det(rr�) = �1�2�3, �1 < �2 < �3 are the eigenval-
ues of rr�. In the following, we will use @

R

to denote derivatives
with respect to R. Since critical events are found where d = 0 and
r� = 0, let us rewrite Equation (4) in terms of the properties of
the field, using the coordinate transformation from r, R to r�, d.
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with � the Laplacian. The fully covariant formulation of the num-
ber density of critical event is then the following
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1 Note that the determinant can be developed along the first line or the first
column of the Jacobian matrix to find out – as shown by the simplifications
in the next section – that the final result does not depend on @
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d.

2.1.1 Expression in the frame of the Hessian

The Jacobian is by construction invariant under rotation, so we can
rewrite it in the frame of the eigenvalues without loss of generality.
Developing d into �3

2x11x22x33, the Jacobian can be rewritten in
coordinate, assuming (arbitrarily) that direction 3 is the degenerate
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where the factorisation with |x11x22| along the first line in equa-
tion (8) is consequence of x33 being zero – which also nulls the
last component of equation (9), while equation (10) follows by ex-
panding the determinant over the last line of (9). Using equation (6)
again, we can rewrite the number density of slopping saddle at
height ⌫ as2
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[� its factorises in odd and even doesn’t it?] where R⇤ and ˜R are
the typical inter critical point separation and inter inflection point
separation defined in equation (A1). Indeed, the novelty of (12)
w.r.t. the classical BBKS formula is the weight |x3ii||x333| which
requires the knowledge of the statistics of the 3rd order derivative
of the field. Note that R is measured in units of ˜R ⇠ 3

4
R⇤ (for

n ⇠ �2, see Appendix A). Let us call n = @N/@r3 the volume
density of doubly critical points. We can forget about the explicit
dependency over r as the field is assumed to be stationary. Intro-
ducing �D(x � ⌫) in the expectation of equation (11) allows us to
write the density of doubly critical points
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The expectations in equation (12) can be evaluated with
the joint statistics of the field and its successive derivatives,
P(x, x
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, x
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) which involves 20 variables, see Appendix B.
Since the integrant is mute w.r.t. to x3ij for i 6= j and x

ijk

for
i 6= 3 the marginalisation over these variable is straightforward.
When removing the absolute value in equation (12), the expecta-
tion can be evaluated symbolically and reads
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This corresponds to the alternate sum of critical events. [� does
this have a deep topological meaning cf genus? Via the topology
of the excursion set in in space-scale? ] It is plotted in Figure 4 as
a function of ⌫ for different values of n

s

. Note that @2N/@r3@R
scale like 1/R4 but is also a function of R via n
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through
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2 One factor of |x11x22| drops between equation (10) and (12) because
of the Dirac of d in equation (7).
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Figure 3. Spherical averaging as a proxy for time evolution. Physically,
slopping saddles are on the slopes of large peaks which will swallow with
cosmic time neighbouring peaks and their filaments. In some sense, the
joint disappearance of peaks, filaments and walls, is a consequence of
the smoothing process, which washes out concurrently peaks, tunnels and
voids.

2.1 Counting critical events in multi-scale landscape

Following Hanami (2001), the number density of critical events in
position-scale space is given by

@2N
@r3@R

⌘ h�(3)D (r� r0)�D(R�R0)i , (4)

where r0 is a (double) critical point in real space and R0 the scale
at which the two critical points merge. Special points where two
critical points merge as a function of R are called critical events
(the slopping saddles of Hanami), for example a maximum and a
filament-saddle. Equivalently, critical events can be defined as crit-
ical points where one of the eigenvalue of the hessian vanishes,
which is also equivalent to having a vanishing determinant.

Let us therefore first define the determinant of the hessian
d(�) ⌘ det(rr�) = �1�2�3, �1 < �2 < �3 are the eigenval-
ues of rr�. In the following, we will use @

R

to denote derivatives
with respect to R. Since critical events are found where d = 0 and
r� = 0, let us rewrite Equation (4) in terms of the properties of
the field, using the coordinate transformation from r, R to r�, d.
This involves the 4D Jacobian of the transformation1

J(d, �) =
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using the fact that for a Gaussian filter
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with � the Laplacian. The fully covariant formulation of the num-
ber density of critical event is then the following
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=
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(3)
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E
. (7)

1 Note that the determinant can be developed along the first line or the first
column of the Jacobian matrix to find out – as shown by the simplifications
in the next section – that the final result does not depend on @

R

d.

2.1.1 Expression in the frame of the Hessian

The Jacobian is by construction invariant under rotation, so we can
rewrite it in the frame of the eigenvalues without loss of generality.
Developing d into �3

2x11x22x33, the Jacobian can be rewritten in
coordinate, assuming (arbitrarily) that direction 3 is the degenerate
one. Then
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= |x11x22|2|@R
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where the factorisation with |x11x22| along the first line in equa-
tion (8) is consequence of x33 being zero – which also nulls the
last component of equation (9), while equation (10) follows by ex-
panding the determinant over the last line of (9). Using equation (6)
again, we can rewrite the number density of slopping saddle at
height ⌫ as2
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[� its factorises in odd and even doesn’t it?] where R⇤ and ˜R are
the typical inter critical point separation and inter inflection point
separation defined in equation (A1). Indeed, the novelty of (12)
w.r.t. the classical BBKS formula is the weight |x3ii||x333| which
requires the knowledge of the statistics of the 3rd order derivative
of the field. Note that R is measured in units of ˜R ⇠ 3

4
R⇤ (for

n ⇠ �2, see Appendix A). Let us call n = @N/@r3 the volume
density of doubly critical points. We can forget about the explicit
dependency over r as the field is assumed to be stationary. Intro-
ducing �D(x � ⌫) in the expectation of equation (11) allows us to
write the density of doubly critical points
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The expectations in equation (12) can be evaluated with
the joint statistics of the field and its successive derivatives,
P(x, x

i

, x
ij

, x
ijk

) which involves 20 variables, see Appendix B.
Since the integrant is mute w.r.t. to x3ij for i 6= j and x

ijk

for
i 6= 3 the marginalisation over these variable is straightforward.
When removing the absolute value in equation (12), the expecta-
tion can be evaluated symbolically and reads
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This corresponds to the alternate sum of critical events. [� does
this have a deep topological meaning cf genus? Via the topology
of the excursion set in in space-scale? ] It is plotted in Figure 4 as
a function of ⌫ for different values of n
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. Note that @2N/@r3@R
scale like 1/R4 but is also a function of R via n
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through
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2 One factor of |x11x22| drops between equation (10) and (12) because
of the Dirac of d in equation (7).
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Figure 3. Spherical averaging as a proxy for time evolution. Physically,
slopping saddles are on the slopes of large peaks which will swallow with
cosmic time neighbouring peaks and their filaments. In some sense, the
joint disappearance of peaks, filaments and walls, is a consequence of
the smoothing process, which washes out concurrently peaks, tunnels and
voids.

2.1 Counting critical events in multi-scale landscape

Following Hanami (2001), the number density of critical events in
position-scale space is given by

@2N
@r3@R

⌘ h�(3)D (r� r0)�D(R�R0)i , (4)

where r0 is a (double) critical point in real space and R0 the scale
at which the two critical points merge. Special points where two
critical points merge as a function of R are called critical events
(the slopping saddles of Hanami), for example a maximum and a
filament-saddle. Equivalently, critical events can be defined as crit-
ical points where one of the eigenvalue of the hessian vanishes,
which is also equivalent to having a vanishing determinant.

Let us therefore first define the determinant of the hessian
d(�) ⌘ det(rr�) = �1�2�3, �1 < �2 < �3 are the eigenval-
ues of rr�. In the following, we will use @

R

to denote derivatives
with respect to R. Since critical events are found where d = 0 and
r� = 0, let us rewrite Equation (4) in terms of the properties of
the field, using the coordinate transformation from r, R to r�, d.
This involves the 4D Jacobian of the transformation1

J(d, �) =

�����
@
R

d ~rd

@
R

~r�T ~r~r�

����� =

�����
@
R

d ~rd

�R~r��T ~r~r�

����� , (5)

using the fact that for a Gaussian filter
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with � the Laplacian. The fully covariant formulation of the num-
ber density of critical event is then the following
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=
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(3)
D (r�)�D(d)
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. (7)

1 Note that the determinant can be developed along the first line or the first
column of the Jacobian matrix to find out – as shown by the simplifications
in the next section – that the final result does not depend on @

R

d.

2.1.1 Expression in the frame of the Hessian

The Jacobian is by construction invariant under rotation, so we can
rewrite it in the frame of the eigenvalues without loss of generality.
Developing d into �3

2x11x22x33, the Jacobian can be rewritten in
coordinate, assuming (arbitrarily) that direction 3 is the degenerate
one. Then
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where the factorisation with |x11x22| along the first line in equa-
tion (8) is consequence of x33 being zero – which also nulls the
last component of equation (9), while equation (10) follows by ex-
panding the determinant over the last line of (9). Using equation (6)
again, we can rewrite the number density of slopping saddle at
height ⌫ as2
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[� its factorises in odd and even doesn’t it?] where R⇤ and ˜R are
the typical inter critical point separation and inter inflection point
separation defined in equation (A1). Indeed, the novelty of (12)
w.r.t. the classical BBKS formula is the weight |x3ii||x333| which
requires the knowledge of the statistics of the 3rd order derivative
of the field. Note that R is measured in units of ˜R ⇠ 3

4
R⇤ (for

n ⇠ �2, see Appendix A). Let us call n = @N/@r3 the volume
density of doubly critical points. We can forget about the explicit
dependency over r as the field is assumed to be stationary. Intro-
ducing �D(x � ⌫) in the expectation of equation (11) allows us to
write the density of doubly critical points
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The expectations in equation (12) can be evaluated with
the joint statistics of the field and its successive derivatives,
P(x, x
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, x
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, x
ijk

) which involves 20 variables, see Appendix B.
Since the integrant is mute w.r.t. to x3ij for i 6= j and x

ijk

for
i 6= 3 the marginalisation over these variable is straightforward.
When removing the absolute value in equation (12), the expecta-
tion can be evaluated symbolically and reads
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This corresponds to the alternate sum of critical events. [� does
this have a deep topological meaning cf genus? Via the topology
of the excursion set in in space-scale? ] It is plotted in Figure 4 as
a function of ⌫ for different values of n
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. Note that @2N/@r3@R
scale like 1/R4 but is also a function of R via n
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through
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2 One factor of |x11x22| drops between equation (10) and (12) because
of the Dirac of d in equation (7).
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Figure 3. Spherical averaging as a proxy for time evolution. Physically,
slopping saddles are on the slopes of large peaks which will swallow with
cosmic time neighbouring peaks and their filaments. In some sense, the
joint disappearance of peaks, filaments and walls, is a consequence of
the smoothing process, which washes out concurrently peaks, tunnels and
voids.

2.1 Counting critical events in multi-scale landscape

Following Hanami (2001), the number density of critical events in
position-scale space is given by

@2N
@r3@R

⌘ h�(3)D (r� r0)�D(R�R0)i , (4)

where r0 is a (double) critical point in real space and R0 the scale
at which the two critical points merge. Special points where two
critical points merge as a function of R are called critical events
(the slopping saddles of Hanami), for example a maximum and a
filament-saddle. Equivalently, critical events can be defined as crit-
ical points where one of the eigenvalue of the hessian vanishes,
which is also equivalent to having a vanishing determinant.

Let us therefore first define the determinant of the hessian
d(�) ⌘ det(rr�) = �1�2�3, �1 < �2 < �3 are the eigenval-
ues of rr�. In the following, we will use @

R

to denote derivatives
with respect to R. Since critical events are found where d = 0 and
r� = 0, let us rewrite Equation (4) in terms of the properties of
the field, using the coordinate transformation from r, R to r�, d.
This involves the 4D Jacobian of the transformation1
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�����
@
R

d ~rd

@
R

~r�T ~r~r�

����� =

�����
@
R

d ~rd

�R~r��T ~r~r�

����� , (5)

using the fact that for a Gaussian filter

@
R

� = �R��, (6)

with � the Laplacian. The fully covariant formulation of the num-
ber density of critical event is then the following
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1 Note that the determinant can be developed along the first line or the first
column of the Jacobian matrix to find out – as shown by the simplifications
in the next section – that the final result does not depend on @
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d.

2.1.1 Expression in the frame of the Hessian

The Jacobian is by construction invariant under rotation, so we can
rewrite it in the frame of the eigenvalues without loss of generality.
Developing d into �3
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where the factorisation with |x11x22| along the first line in equa-
tion (8) is consequence of x33 being zero – which also nulls the
last component of equation (9), while equation (10) follows by ex-
panding the determinant over the last line of (9). Using equation (6)
again, we can rewrite the number density of slopping saddle at
height ⌫ as2
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[� its factorises in odd and even doesn’t it?] where R⇤ and ˜R are
the typical inter critical point separation and inter inflection point
separation defined in equation (A1). Indeed, the novelty of (12)
w.r.t. the classical BBKS formula is the weight |x3ii||x333| which
requires the knowledge of the statistics of the 3rd order derivative
of the field. Note that R is measured in units of ˜R ⇠ 3

4
R⇤ (for

n ⇠ �2, see Appendix A). Let us call n = @N/@r3 the volume
density of doubly critical points. We can forget about the explicit
dependency over r as the field is assumed to be stationary. Intro-
ducing �D(x � ⌫) in the expectation of equation (11) allows us to
write the density of doubly critical points
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The expectations in equation (12) can be evaluated with
the joint statistics of the field and its successive derivatives,
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) which involves 20 variables, see Appendix B.
Since the integrant is mute w.r.t. to x3ij for i 6= j and x

ijk

for
i 6= 3 the marginalisation over these variable is straightforward.
When removing the absolute value in equation (12), the expecta-
tion can be evaluated symbolically and reads
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This corresponds to the alternate sum of critical events. [� does
this have a deep topological meaning cf genus? Via the topology
of the excursion set in in space-scale? ] It is plotted in Figure 4 as
a function of ⌫ for different values of n

s

. Note that @2N/@r3@R
scale like 1/R4 but is also a function of R via n

s

through

3 + n
s

(R) = �@ log �2
0

@ logR
, (14)

2 One factor of |x11x22| drops between equation (10) and (12) because
of the Dirac of d in equation (7).
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Figure 3. Spherical averaging as a proxy for time evolution. Physically,
slopping saddles are on the slopes of large peaks which will swallow with
cosmic time neighbouring peaks and their filaments. In some sense, the
joint disappearance of peaks, filaments and walls, is a consequence of
the smoothing process, which washes out concurrently peaks, tunnels and
voids.

2.1 Counting critical events in multi-scale landscape

Following Hanami (2001), the number density of critical events in
position-scale space is given by

@2N
@r3@R

⌘ h�(3)D (r� r0)�D(R�R0)i , (4)

where r0 is a (double) critical point in real space and R0 the scale
at which the two critical points merge. Special points where two
critical points merge as a function of R are called critical events
(the slopping saddles of Hanami), for example a maximum and a
filament-saddle. Equivalently, critical events can be defined as crit-
ical points where one of the eigenvalue of the hessian vanishes,
which is also equivalent to having a vanishing determinant.

Let us therefore first define the determinant of the hessian
d(�) ⌘ det(rr�) = �1�2�3, �1 < �2 < �3 are the eigenval-
ues of rr�. In the following, we will use @

R

to denote derivatives
with respect to R. Since critical events are found where d = 0 and
r� = 0, let us rewrite Equation (4) in terms of the properties of
the field, using the coordinate transformation from r, R to r�, d.
This involves the 4D Jacobian of the transformation1
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with � the Laplacian. The fully covariant formulation of the num-
ber density of critical event is then the following
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1 Note that the determinant can be developed along the first line or the first
column of the Jacobian matrix to find out – as shown by the simplifications
in the next section – that the final result does not depend on @
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d.

2.1.1 Expression in the frame of the Hessian

The Jacobian is by construction invariant under rotation, so we can
rewrite it in the frame of the eigenvalues without loss of generality.
Developing d into �3

2x11x22x33, the Jacobian can be rewritten in
coordinate, assuming (arbitrarily) that direction 3 is the degenerate
one. Then
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where the factorisation with |x11x22| along the first line in equa-
tion (8) is consequence of x33 being zero – which also nulls the
last component of equation (9), while equation (10) follows by ex-
panding the determinant over the last line of (9). Using equation (6)
again, we can rewrite the number density of slopping saddle at
height ⌫ as2
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[� its factorises in odd and even doesn’t it?] where R⇤ and ˜R are
the typical inter critical point separation and inter inflection point
separation defined in equation (A1). Indeed, the novelty of (12)
w.r.t. the classical BBKS formula is the weight |x3ii||x333| which
requires the knowledge of the statistics of the 3rd order derivative
of the field. Note that R is measured in units of ˜R ⇠ 3

4
R⇤ (for

n ⇠ �2, see Appendix A). Let us call n = @N/@r3 the volume
density of doubly critical points. We can forget about the explicit
dependency over r as the field is assumed to be stationary. Intro-
ducing �D(x � ⌫) in the expectation of equation (11) allows us to
write the density of doubly critical points
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The expectations in equation (12) can be evaluated with
the joint statistics of the field and its successive derivatives,
P(x, x

i

, x
ij

, x
ijk

) which involves 20 variables, see Appendix B.
Since the integrant is mute w.r.t. to x3ij for i 6= j and x

ijk

for
i 6= 3 the marginalisation over these variable is straightforward.
When removing the absolute value in equation (12), the expecta-
tion can be evaluated symbolically and reads
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This corresponds to the alternate sum of critical events. [� does
this have a deep topological meaning cf genus? Via the topology
of the excursion set in in space-scale? ] It is plotted in Figure 4 as
a function of ⌫ for different values of n

s

. Note that @2N/@r3@R
scale like 1/R4 but is also a function of R via n
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through

3 + n
s
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0
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, (14)

2 One factor of |x11x22| drops between equation (10) and (12) because
of the Dirac of d in equation (7).
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Figure 3. Spherical averaging as a proxy for time evolution. Physically,
slopping saddles are on the slopes of large peaks which will swallow with
cosmic time neighbouring peaks and their filaments. In some sense, the
joint disappearance of peaks, filaments and walls, is a consequence of
the smoothing process, which washes out concurrently peaks, tunnels and
voids.

2.1 Counting critical events in multi-scale landscape

Following Hanami (2001), the number density of critical events in
position-scale space is given by

@2N
@r3@R

⌘ h�(3)D (r� r0)�D(R�R0)i , (4)

where r0 is a (double) critical point in real space and R0 the scale
at which the two critical points merge. Special points where two
critical points merge as a function of R are called critical events
(the slopping saddles of Hanami), for example a maximum and a
filament-saddle. Equivalently, critical events can be defined as crit-
ical points where one of the eigenvalue of the hessian vanishes,
which is also equivalent to having a vanishing determinant.

Let us therefore first define the determinant of the hessian
d(�) ⌘ det(rr�) = �1�2�3, �1 < �2 < �3 are the eigenval-
ues of rr�. In the following, we will use @

R

to denote derivatives
with respect to R. Since critical events are found where d = 0 and
r� = 0, let us rewrite Equation (4) in terms of the properties of
the field, using the coordinate transformation from r, R to r�, d.
This involves the 4D Jacobian of the transformation1

J(d, �) =
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using the fact that for a Gaussian filter
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with � the Laplacian. The fully covariant formulation of the num-
ber density of critical event is then the following

@2N
@r3@R

=
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(3)
D (r�)�D(d)
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. (7)

1 Note that the determinant can be developed along the first line or the first
column of the Jacobian matrix to find out – as shown by the simplifications
in the next section – that the final result does not depend on @

R

d.

2.1.1 Expression in the frame of the Hessian

The Jacobian is by construction invariant under rotation, so we can
rewrite it in the frame of the eigenvalues without loss of generality.
Developing d into �3

2x11x22x33, the Jacobian can be rewritten in
coordinate, assuming (arbitrarily) that direction 3 is the degenerate
one. Then
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= |x11x22|2|@R

x3||x333|, (10)

where the factorisation with |x11x22| along the first line in equa-
tion (8) is consequence of x33 being zero – which also nulls the
last component of equation (9), while equation (10) follows by ex-
panding the determinant over the last line of (9). Using equation (6)
again, we can rewrite the number density of slopping saddle at
height ⌫ as2
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[� its factorises in odd and even doesn’t it?] where R⇤ and ˜R are
the typical inter critical point separation and inter inflection point
separation defined in equation (A1). Indeed, the novelty of (12)
w.r.t. the classical BBKS formula is the weight |x3ii||x333| which
requires the knowledge of the statistics of the 3rd order derivative
of the field. Note that R is measured in units of ˜R ⇠ 3

4
R⇤ (for

n ⇠ �2, see Appendix A). Let us call n = @N/@r3 the volume
density of doubly critical points. We can forget about the explicit
dependency over r as the field is assumed to be stationary. Intro-
ducing �D(x � ⌫) in the expectation of equation (11) allows us to
write the density of doubly critical points
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The expectations in equation (12) can be evaluated with
the joint statistics of the field and its successive derivatives,
P(x, x

i

, x
ij

, x
ijk

) which involves 20 variables, see Appendix B.
Since the integrant is mute w.r.t. to x3ij for i 6= j and x

ijk

for
i 6= 3 the marginalisation over these variable is straightforward.
When removing the absolute value in equation (12), the expecta-
tion can be evaluated symbolically and reads
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This corresponds to the alternate sum of critical events. [� does
this have a deep topological meaning cf genus? Via the topology
of the excursion set in in space-scale? ] It is plotted in Figure 4 as
a function of ⌫ for different values of n

s

. Note that @2N/@r3@R
scale like 1/R4 but is also a function of R via n
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through

3 + n
s
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2 One factor of |x11x22| drops between equation (10) and (12) because
of the Dirac of d in equation (7).
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Figure 3. Spherical averaging as a proxy for time evolution. Physically,
slopping saddles are on the slopes of large peaks which will swallow with
cosmic time neighbouring peaks and their filaments. In some sense, the
joint disappearance of peaks, filaments and walls, is a consequence of
the smoothing process, which washes out concurrently peaks, tunnels and
voids.

2.1 Counting critical events in multi-scale landscape

Following Hanami (2001), the number density of critical events in
position-scale space is given by

@2N
@r3@R

⌘ h�(3)D (r� r0)�D(R�R0)i , (4)

where r0 is a (double) critical point in real space and R0 the scale
at which the two critical points merge. Special points where two
critical points merge as a function of R are called critical events
(the slopping saddles of Hanami), for example a maximum and a
filament-saddle. Equivalently, critical events can be defined as crit-
ical points where one of the eigenvalue of the hessian vanishes,
which is also equivalent to having a vanishing determinant.

Let us therefore first define the determinant of the hessian
d(�) ⌘ det(rr�) = �1�2�3, �1 < �2 < �3 are the eigenval-
ues of rr�. In the following, we will use @

R

to denote derivatives
with respect to R. Since critical events are found where d = 0 and
r� = 0, let us rewrite Equation (4) in terms of the properties of
the field, using the coordinate transformation from r, R to r�, d.
This involves the 4D Jacobian of the transformation1

J(d, �) =
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����� , (5)

using the fact that for a Gaussian filter
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with � the Laplacian. The fully covariant formulation of the num-
ber density of critical event is then the following

@2N
@r3@R

=

D
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(3)
D (r�)�D(d)

E
. (7)

1 Note that the determinant can be developed along the first line or the first
column of the Jacobian matrix to find out – as shown by the simplifications
in the next section – that the final result does not depend on @

R

d.

2.1.1 Expression in the frame of the Hessian

The Jacobian is by construction invariant under rotation, so we can
rewrite it in the frame of the eigenvalues without loss of generality.
Developing d into �3

2x11x22x33, the Jacobian can be rewritten in
coordinate, assuming (arbitrarily) that direction 3 is the degenerate
one. Then

J(d, �)
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= |x11x22|2|@R

x3||x333|, (10)

where the factorisation with |x11x22| along the first line in equa-
tion (8) is consequence of x33 being zero – which also nulls the
last component of equation (9), while equation (10) follows by ex-
panding the determinant over the last line of (9). Using equation (6)
again, we can rewrite the number density of slopping saddle at
height ⌫ as2
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[� its factorises in odd and even doesn’t it?] where R⇤ and ˜R are
the typical inter critical point separation and inter inflection point
separation defined in equation (A1). Indeed, the novelty of (12)
w.r.t. the classical BBKS formula is the weight |x3ii||x333| which
requires the knowledge of the statistics of the 3rd order derivative
of the field. Note that R is measured in units of ˜R ⇠ 3

4
R⇤ (for

n ⇠ �2, see Appendix A). Let us call n = @N/@r3 the volume
density of doubly critical points. We can forget about the explicit
dependency over r as the field is assumed to be stationary. Intro-
ducing �D(x � ⌫) in the expectation of equation (11) allows us to
write the density of doubly critical points
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The expectations in equation (12) can be evaluated with
the joint statistics of the field and its successive derivatives,
P(x, x

i

, x
ij

, x
ijk

) which involves 20 variables, see Appendix B.
Since the integrant is mute w.r.t. to x3ij for i 6= j and x

ijk

for
i 6= 3 the marginalisation over these variable is straightforward.
When removing the absolute value in equation (12), the expecta-
tion can be evaluated symbolically and reads
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This corresponds to the alternate sum of critical events. [� does
this have a deep topological meaning cf genus? Via the topology
of the excursion set in in space-scale? ] It is plotted in Figure 4 as
a function of ⌫ for different values of n
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. Note that @2N/@r3@R
scale like 1/R4 but is also a function of R via n
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through
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2 One factor of |x11x22| drops between equation (10) and (12) because
of the Dirac of d in equation (7).

MNRAS 000, 000–000 (0000)

The theory of merging structures 3

Figure 3. Spherical averaging as a proxy for time evolution. Physically,
slopping saddles are on the slopes of large peaks which will swallow with
cosmic time neighbouring peaks and their filaments. In some sense, the
joint disappearance of peaks, filaments and walls, is a consequence of
the smoothing process, which washes out concurrently peaks, tunnels and
voids.

2.1 Counting critical events in multi-scale landscape

Following Hanami (2001), the number density of critical events in
position-scale space is given by

@2N
@r3@R

⌘ h�(3)D (r� r0)�D(R�R0)i , (4)

where r0 is a (double) critical point in real space and R0 the scale
at which the two critical points merge. Special points where two
critical points merge as a function of R are called critical events
(the slopping saddles of Hanami), for example a maximum and a
filament-saddle. Equivalently, critical events can be defined as crit-
ical points where one of the eigenvalue of the hessian vanishes,
which is also equivalent to having a vanishing determinant.

Let us therefore first define the determinant of the hessian
d(�) ⌘ det(rr�) = �1�2�3, �1 < �2 < �3 are the eigenval-
ues of rr�. In the following, we will use @

R

to denote derivatives
with respect to R. Since critical events are found where d = 0 and
r� = 0, let us rewrite Equation (4) in terms of the properties of
the field, using the coordinate transformation from r, R to r�, d.
This involves the 4D Jacobian of the transformation1

J(d, �) =
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using the fact that for a Gaussian filter
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with � the Laplacian. The fully covariant formulation of the num-
ber density of critical event is then the following
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=
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(3)
D (r�)�D(d)

E
. (7)

1 Note that the determinant can be developed along the first line or the first
column of the Jacobian matrix to find out – as shown by the simplifications
in the next section – that the final result does not depend on @

R

d.

2.1.1 Expression in the frame of the Hessian

The Jacobian is by construction invariant under rotation, so we can
rewrite it in the frame of the eigenvalues without loss of generality.
Developing d into �3

2x11x22x33, the Jacobian can be rewritten in
coordinate, assuming (arbitrarily) that direction 3 is the degenerate
one. Then
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= |x11x22|2|@R
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where the factorisation with |x11x22| along the first line in equa-
tion (8) is consequence of x33 being zero – which also nulls the
last component of equation (9), while equation (10) follows by ex-
panding the determinant over the last line of (9). Using equation (6)
again, we can rewrite the number density of slopping saddle at
height ⌫ as2
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[� its factorises in odd and even doesn’t it?] where R⇤ and ˜R are
the typical inter critical point separation and inter inflection point
separation defined in equation (A1). Indeed, the novelty of (12)
w.r.t. the classical BBKS formula is the weight |x3ii||x333| which
requires the knowledge of the statistics of the 3rd order derivative
of the field. Note that R is measured in units of ˜R ⇠ 3

4
R⇤ (for

n ⇠ �2, see Appendix A). Let us call n = @N/@r3 the volume
density of doubly critical points. We can forget about the explicit
dependency over r as the field is assumed to be stationary. Intro-
ducing �D(x � ⌫) in the expectation of equation (11) allows us to
write the density of doubly critical points
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The expectations in equation (12) can be evaluated with
the joint statistics of the field and its successive derivatives,
P(x, x
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, x
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) which involves 20 variables, see Appendix B.
Since the integrant is mute w.r.t. to x3ij for i 6= j and x
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for
i 6= 3 the marginalisation over these variable is straightforward.
When removing the absolute value in equation (12), the expecta-
tion can be evaluated symbolically and reads
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This corresponds to the alternate sum of critical events. [� does
this have a deep topological meaning cf genus? Via the topology
of the excursion set in in space-scale? ] It is plotted in Figure 4 as
a function of ⌫ for different values of n

s

. Note that @2N/@r3@R
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2 One factor of |x11x22| drops between equation (10) and (12) because
of the Dirac of d in equation (7).
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Figure 3. Spherical averaging as a proxy for time evolution. Physically,
slopping saddles are on the slopes of large peaks which will swallow with
cosmic time neighbouring peaks and their filaments. In some sense, the
joint disappearance of peaks, filaments and walls, is a consequence of
the smoothing process, which washes out concurrently peaks, tunnels and
voids.

2.1 Counting critical events in multi-scale landscape

Following Hanami (2001), the number density of critical events in
position-scale space is given by

@2N
@r3@R

⌘ h�(3)D (r� r0)�D(R�R0)i , (4)

where r0 is a (double) critical point in real space and R0 the scale
at which the two critical points merge. Special points where two
critical points merge as a function of R are called critical events
(the slopping saddles of Hanami), for example a maximum and a
filament-saddle. Equivalently, critical events can be defined as crit-
ical points where one of the eigenvalue of the hessian vanishes,
which is also equivalent to having a vanishing determinant.

Let us therefore first define the determinant of the hessian
d(�) ⌘ det(rr�) = �1�2�3, �1 < �2 < �3 are the eigenval-
ues of rr�. In the following, we will use @

R

to denote derivatives
with respect to R. Since critical events are found where d = 0 and
r� = 0, let us rewrite Equation (4) in terms of the properties of
the field, using the coordinate transformation from r, R to r�, d.
This involves the 4D Jacobian of the transformation1
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with � the Laplacian. The fully covariant formulation of the num-
ber density of critical event is then the following
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1 Note that the determinant can be developed along the first line or the first
column of the Jacobian matrix to find out – as shown by the simplifications
in the next section – that the final result does not depend on @
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d.

2.1.1 Expression in the frame of the Hessian

The Jacobian is by construction invariant under rotation, so we can
rewrite it in the frame of the eigenvalues without loss of generality.
Developing d into �3

2x11x22x33, the Jacobian can be rewritten in
coordinate, assuming (arbitrarily) that direction 3 is the degenerate
one. Then
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where the factorisation with |x11x22| along the first line in equa-
tion (8) is consequence of x33 being zero – which also nulls the
last component of equation (9), while equation (10) follows by ex-
panding the determinant over the last line of (9). Using equation (6)
again, we can rewrite the number density of slopping saddle at
height ⌫ as2
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[� its factorises in odd and even doesn’t it?] where R⇤ and ˜R are
the typical inter critical point separation and inter inflection point
separation defined in equation (A1). Indeed, the novelty of (12)
w.r.t. the classical BBKS formula is the weight |x3ii||x333| which
requires the knowledge of the statistics of the 3rd order derivative
of the field. Note that R is measured in units of ˜R ⇠ 3

4
R⇤ (for

n ⇠ �2, see Appendix A). Let us call n = @N/@r3 the volume
density of doubly critical points. We can forget about the explicit
dependency over r as the field is assumed to be stationary. Intro-
ducing �D(x � ⌫) in the expectation of equation (11) allows us to
write the density of doubly critical points
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The expectations in equation (12) can be evaluated with
the joint statistics of the field and its successive derivatives,
P(x, x

i

, x
ij

, x
ijk

) which involves 20 variables, see Appendix B.
Since the integrant is mute w.r.t. to x3ij for i 6= j and x

ijk

for
i 6= 3 the marginalisation over these variable is straightforward.
When removing the absolute value in equation (12), the expecta-
tion can be evaluated symbolically and reads
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This corresponds to the alternate sum of critical events. [� does
this have a deep topological meaning cf genus? Via the topology
of the excursion set in in space-scale? ] It is plotted in Figure 4 as
a function of ⌫ for different values of n

s

. Note that @2N/@r3@R
scale like 1/R4 but is also a function of R via n

s

through

3 + n
s

(R) = �@ log �2
0

@ logR
, (14)

2 One factor of |x11x22| drops between equation (10) and (12) because
of the Dirac of d in equation (7).
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Figure 3. Spherical averaging as a proxy for time evolution. Physically,
slopping saddles are on the slopes of large peaks which will swallow with
cosmic time neighbouring peaks and their filaments. In some sense, the
joint disappearance of peaks, filaments and walls, is a consequence of
the smoothing process, which washes out concurrently peaks, tunnels and
voids.

2.1 Counting critical events in multi-scale landscape

Following Hanami (2001), the number density of critical events in
position-scale space is given by
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⌘ h�(3)D (r� r0)�D(R�R0)i , (4)

where r0 is a (double) critical point in real space and R0 the scale
at which the two critical points merge. Special points where two
critical points merge as a function of R are called critical events
(the slopping saddles of Hanami), for example a maximum and a
filament-saddle. Equivalently, critical events can be defined as crit-
ical points where one of the eigenvalue of the hessian vanishes,
which is also equivalent to having a vanishing determinant.

Let us therefore first define the determinant of the hessian
d(�) ⌘ det(rr�) = �1�2�3, �1 < �2 < �3 are the eigenval-
ues of rr�. In the following, we will use @

R

to denote derivatives
with respect to R. Since critical events are found where d = 0 and
r� = 0, let us rewrite Equation (4) in terms of the properties of
the field, using the coordinate transformation from r, R to r�, d.
This involves the 4D Jacobian of the transformation1
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1 Note that the determinant can be developed along the first line or the first
column of the Jacobian matrix to find out – as shown by the simplifications
in the next section – that the final result does not depend on @
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2.1.1 Expression in the frame of the Hessian

The Jacobian is by construction invariant under rotation, so we can
rewrite it in the frame of the eigenvalues without loss of generality.
Developing d into �3

2x11x22x33, the Jacobian can be rewritten in
coordinate, assuming (arbitrarily) that direction 3 is the degenerate
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where the factorisation with |x11x22| along the first line in equa-
tion (8) is consequence of x33 being zero – which also nulls the
last component of equation (9), while equation (10) follows by ex-
panding the determinant over the last line of (9). Using equation (6)
again, we can rewrite the number density of slopping saddle at
height ⌫ as2
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[� its factorises in odd and even doesn’t it?] where R⇤ and ˜R are
the typical inter critical point separation and inter inflection point
separation defined in equation (A1). Indeed, the novelty of (12)
w.r.t. the classical BBKS formula is the weight |x3ii||x333| which
requires the knowledge of the statistics of the 3rd order derivative
of the field. Note that R is measured in units of ˜R ⇠ 3

4
R⇤ (for

n ⇠ �2, see Appendix A). Let us call n = @N/@r3 the volume
density of doubly critical points. We can forget about the explicit
dependency over r as the field is assumed to be stationary. Intro-
ducing �D(x � ⌫) in the expectation of equation (11) allows us to
write the density of doubly critical points
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The expectations in equation (12) can be evaluated with
the joint statistics of the field and its successive derivatives,
P(x, x
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, x
ijk

) which involves 20 variables, see Appendix B.
Since the integrant is mute w.r.t. to x3ij for i 6= j and x

ijk

for
i 6= 3 the marginalisation over these variable is straightforward.
When removing the absolute value in equation (12), the expecta-
tion can be evaluated symbolically and reads
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This corresponds to the alternate sum of critical events. [� does
this have a deep topological meaning cf genus? Via the topology
of the excursion set in in space-scale? ] It is plotted in Figure 4 as
a function of ⌫ for different values of n
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scale like 1/R4 but is also a function of R via n
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2 One factor of |x11x22| drops between equation (10) and (12) because
of the Dirac of d in equation (7).
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Figure 3. Spherical averaging as a proxy for time evolution. Physically,
slopping saddles are on the slopes of large peaks which will swallow with
cosmic time neighbouring peaks and their filaments. In some sense, the
joint disappearance of peaks, filaments and walls, is a consequence of
the smoothing process, which washes out concurrently peaks, tunnels and
voids.

2.1 Counting critical events in multi-scale landscape

Following Hanami (2001), the number density of critical events in
position-scale space is given by

@2N
@r3@R

⌘ h�(3)D (r� r0)�D(R�R0)i , (4)

where r0 is a (double) critical point in real space and R0 the scale
at which the two critical points merge. Special points where two
critical points merge as a function of R are called critical events
(the slopping saddles of Hanami), for example a maximum and a
filament-saddle. Equivalently, critical events can be defined as crit-
ical points where one of the eigenvalue of the hessian vanishes,
which is also equivalent to having a vanishing determinant.

Let us therefore first define the determinant of the hessian
d(�) ⌘ det(rr�) = �1�2�3, �1 < �2 < �3 are the eigenval-
ues of rr�. In the following, we will use @

R

to denote derivatives
with respect to R. Since critical events are found where d = 0 and
r� = 0, let us rewrite Equation (4) in terms of the properties of
the field, using the coordinate transformation from r, R to r�, d.
This involves the 4D Jacobian of the transformation1

J(d, �) =
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using the fact that for a Gaussian filter
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with � the Laplacian. The fully covariant formulation of the num-
ber density of critical event is then the following
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=
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(3)
D (r�)�D(d)

E
. (7)

1 Note that the determinant can be developed along the first line or the first
column of the Jacobian matrix to find out – as shown by the simplifications
in the next section – that the final result does not depend on @

R

d.

2.1.1 Expression in the frame of the Hessian

The Jacobian is by construction invariant under rotation, so we can
rewrite it in the frame of the eigenvalues without loss of generality.
Developing d into �3

2x11x22x33, the Jacobian can be rewritten in
coordinate, assuming (arbitrarily) that direction 3 is the degenerate
one. Then
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where the factorisation with |x11x22| along the first line in equa-
tion (8) is consequence of x33 being zero – which also nulls the
last component of equation (9), while equation (10) follows by ex-
panding the determinant over the last line of (9). Using equation (6)
again, we can rewrite the number density of slopping saddle at
height ⌫ as2
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[� its factorises in odd and even doesn’t it?] where R⇤ and ˜R are
the typical inter critical point separation and inter inflection point
separation defined in equation (A1). Indeed, the novelty of (12)
w.r.t. the classical BBKS formula is the weight |x3ii||x333| which
requires the knowledge of the statistics of the 3rd order derivative
of the field. Note that R is measured in units of ˜R ⇠ 3

4
R⇤ (for

n ⇠ �2, see Appendix A). Let us call n = @N/@r3 the volume
density of doubly critical points. We can forget about the explicit
dependency over r as the field is assumed to be stationary. Intro-
ducing �D(x � ⌫) in the expectation of equation (11) allows us to
write the density of doubly critical points
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The expectations in equation (12) can be evaluated with
the joint statistics of the field and its successive derivatives,
P(x, x
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, x
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, x
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) which involves 20 variables, see Appendix B.
Since the integrant is mute w.r.t. to x3ij for i 6= j and x

ijk

for
i 6= 3 the marginalisation over these variable is straightforward.
When removing the absolute value in equation (12), the expecta-
tion can be evaluated symbolically and reads
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This corresponds to the alternate sum of critical events. [� does
this have a deep topological meaning cf genus? Via the topology
of the excursion set in in space-scale? ] It is plotted in Figure 4 as
a function of ⌫ for different values of n
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. Note that @2N/@r3@R
scale like 1/R4 but is also a function of R via n
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through
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2 One factor of |x11x22| drops between equation (10) and (12) because
of the Dirac of d in equation (7).
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Figure 3. Spherical averaging as a proxy for time evolution. Physically,
slopping saddles are on the slopes of large peaks which will swallow with
cosmic time neighbouring peaks and their filaments. In some sense, the
joint disappearance of peaks, filaments and walls, is a consequence of
the smoothing process, which washes out concurrently peaks, tunnels and
voids.

2.1 Counting critical events in multi-scale landscape

Following Hanami (2001), the number density of critical events in
position-scale space is given by

@2N
@r3@R

⌘ h�(3)D (r� r0)�D(R�R0)i , (4)

where r0 is a (double) critical point in real space and R0 the scale
at which the two critical points merge. Special points where two
critical points merge as a function of R are called critical events
(the slopping saddles of Hanami), for example a maximum and a
filament-saddle. Equivalently, critical events can be defined as crit-
ical points where one of the eigenvalue of the hessian vanishes,
which is also equivalent to having a vanishing determinant.

Let us therefore first define the determinant of the hessian
d(�) ⌘ det(rr�) = �1�2�3, �1 < �2 < �3 are the eigenval-
ues of rr�. In the following, we will use @

R

to denote derivatives
with respect to R. Since critical events are found where d = 0 and
r� = 0, let us rewrite Equation (4) in terms of the properties of
the field, using the coordinate transformation from r, R to r�, d.
This involves the 4D Jacobian of the transformation1
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with � the Laplacian. The fully covariant formulation of the num-
ber density of critical event is then the following
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1 Note that the determinant can be developed along the first line or the first
column of the Jacobian matrix to find out – as shown by the simplifications
in the next section – that the final result does not depend on @
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d.

2.1.1 Expression in the frame of the Hessian

The Jacobian is by construction invariant under rotation, so we can
rewrite it in the frame of the eigenvalues without loss of generality.
Developing d into �3

2x11x22x33, the Jacobian can be rewritten in
coordinate, assuming (arbitrarily) that direction 3 is the degenerate
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where the factorisation with |x11x22| along the first line in equa-
tion (8) is consequence of x33 being zero – which also nulls the
last component of equation (9), while equation (10) follows by ex-
panding the determinant over the last line of (9). Using equation (6)
again, we can rewrite the number density of slopping saddle at
height ⌫ as2
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[� its factorises in odd and even doesn’t it?] where R⇤ and ˜R are
the typical inter critical point separation and inter inflection point
separation defined in equation (A1). Indeed, the novelty of (12)
w.r.t. the classical BBKS formula is the weight |x3ii||x333| which
requires the knowledge of the statistics of the 3rd order derivative
of the field. Note that R is measured in units of ˜R ⇠ 3

4
R⇤ (for

n ⇠ �2, see Appendix A). Let us call n = @N/@r3 the volume
density of doubly critical points. We can forget about the explicit
dependency over r as the field is assumed to be stationary. Intro-
ducing �D(x � ⌫) in the expectation of equation (11) allows us to
write the density of doubly critical points
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The expectations in equation (12) can be evaluated with
the joint statistics of the field and its successive derivatives,
P(x, x

i

, x
ij

, x
ijk

) which involves 20 variables, see Appendix B.
Since the integrant is mute w.r.t. to x3ij for i 6= j and x
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for
i 6= 3 the marginalisation over these variable is straightforward.
When removing the absolute value in equation (12), the expecta-
tion can be evaluated symbolically and reads

@2n

@R@⌫

���
±
=

3

p
3(1��̃2

)(25�4
+30�2

(2⌫2�1)�27)R

20

p
10⇡5/2

(9� 5�2
)

5/2R3
⇤ ˜R2

e
� 9⌫2

2(9�5�2) .

(13)
This corresponds to the alternate sum of critical events. [� does
this have a deep topological meaning cf genus? Via the topology
of the excursion set in in space-scale? ] It is plotted in Figure 4 as
a function of ⌫ for different values of n
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2 One factor of |x11x22| drops between equation (10) and (12) because
of the Dirac of d in equation (7).
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Figure 3. Spherical averaging as a proxy for time evolution. Physically,
slopping saddles are on the slopes of large peaks which will swallow with
cosmic time neighbouring peaks and their filaments. In some sense, the
joint disappearance of peaks, filaments and walls, is a consequence of
the smoothing process, which washes out concurrently peaks, tunnels and
voids.

2.1 Counting critical events in multi-scale landscape

Following Hanami (2001), the number density of critical events in
position-scale space is given by

@2N
@r3@R

⌘ h�(3)D (r� r0)�D(R�R0)i , (4)

where r0 is a (double) critical point in real space and R0 the scale
at which the two critical points merge. Special points where two
critical points merge as a function of R are called critical events
(the slopping saddles of Hanami), for example a maximum and a
filament-saddle. Equivalently, critical events can be defined as crit-
ical points where one of the eigenvalue of the hessian vanishes,
which is also equivalent to having a vanishing determinant.

Let us therefore first define the determinant of the hessian
d(�) ⌘ det(rr�) = �1�2�3, �1 < �2 < �3 are the eigenval-
ues of rr�. In the following, we will use @

R

to denote derivatives
with respect to R. Since critical events are found where d = 0 and
r� = 0, let us rewrite Equation (4) in terms of the properties of
the field, using the coordinate transformation from r, R to r�, d.
This involves the 4D Jacobian of the transformation1
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with � the Laplacian. The fully covariant formulation of the num-
ber density of critical event is then the following
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1 Note that the determinant can be developed along the first line or the first
column of the Jacobian matrix to find out – as shown by the simplifications
in the next section – that the final result does not depend on @
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d.

2.1.1 Expression in the frame of the Hessian

The Jacobian is by construction invariant under rotation, so we can
rewrite it in the frame of the eigenvalues without loss of generality.
Developing d into �3

2x11x22x33, the Jacobian can be rewritten in
coordinate, assuming (arbitrarily) that direction 3 is the degenerate
one. Then

J(d, �)
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= |x11x22|2|@R

x3||x333|, (10)

where the factorisation with |x11x22| along the first line in equa-
tion (8) is consequence of x33 being zero – which also nulls the
last component of equation (9), while equation (10) follows by ex-
panding the determinant over the last line of (9). Using equation (6)
again, we can rewrite the number density of slopping saddle at
height ⌫ as2
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[� its factorises in odd and even doesn’t it?] where R⇤ and ˜R are
the typical inter critical point separation and inter inflection point
separation defined in equation (A1). Indeed, the novelty of (12)
w.r.t. the classical BBKS formula is the weight |x3ii||x333| which
requires the knowledge of the statistics of the 3rd order derivative
of the field. Note that R is measured in units of ˜R ⇠ 3

4
R⇤ (for

n ⇠ �2, see Appendix A). Let us call n = @N/@r3 the volume
density of doubly critical points. We can forget about the explicit
dependency over r as the field is assumed to be stationary. Intro-
ducing �D(x � ⌫) in the expectation of equation (11) allows us to
write the density of doubly critical points
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The expectations in equation (12) can be evaluated with
the joint statistics of the field and its successive derivatives,
P(x, x

i

, x
ij

, x
ijk

) which involves 20 variables, see Appendix B.
Since the integrant is mute w.r.t. to x3ij for i 6= j and x

ijk

for
i 6= 3 the marginalisation over these variable is straightforward.
When removing the absolute value in equation (12), the expecta-
tion can be evaluated symbolically and reads
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This corresponds to the alternate sum of critical events. [� does
this have a deep topological meaning cf genus? Via the topology
of the excursion set in in space-scale? ] It is plotted in Figure 4 as
a function of ⌫ for different values of n

s

. Note that @2N/@r3@R
scale like 1/R4 but is also a function of R via n

s
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, (14)

2 One factor of |x11x22| drops between equation (10) and (12) because
of the Dirac of d in equation (7).
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The theory of merging structures 3

Figure 3. Spherical averaging as a proxy for time evolution. Physically,
slopping saddles are on the slopes of large peaks which will swallow with
cosmic time neighbouring peaks and their filaments. In some sense, the
joint disappearance of peaks, filaments and walls, is a consequence of
the smoothing process, which washes out concurrently peaks, tunnels and
voids.

2.1 Counting critical events in multi-scale landscape

Following Hanami (2001), the number density of critical events in
position-scale space is given by

@2N
@r3@R

⌘ h�(3)D (r� r0)�D(R�R0)i , (4)

where r0 is a (double) critical point in real space and R0 the scale
at which the two critical points merge. Special points where two
critical points merge as a function of R are called critical events
(the slopping saddles of Hanami), for example a maximum and a
filament-saddle. Equivalently, critical events can be defined as crit-
ical points where one of the eigenvalue of the hessian vanishes,
which is also equivalent to having a vanishing determinant.

Let us therefore first define the determinant of the hessian
d(�) ⌘ det(rr�) = �1�2�3, �1 < �2 < �3 are the eigenval-
ues of rr�. In the following, we will use @

R

to denote derivatives
with respect to R. Since critical events are found where d = 0 and
r� = 0, let us rewrite Equation (4) in terms of the properties of
the field, using the coordinate transformation from r, R to r�, d.
This involves the 4D Jacobian of the transformation1
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with � the Laplacian. The fully covariant formulation of the num-
ber density of critical event is then the following
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1 Note that the determinant can be developed along the first line or the first
column of the Jacobian matrix to find out – as shown by the simplifications
in the next section – that the final result does not depend on @
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d.

2.1.1 Expression in the frame of the Hessian

The Jacobian is by construction invariant under rotation, so we can
rewrite it in the frame of the eigenvalues without loss of generality.
Developing d into �3

2x11x22x33, the Jacobian can be rewritten in
coordinate, assuming (arbitrarily) that direction 3 is the degenerate
one. Then
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= |x11x22|2|@R
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where the factorisation with |x11x22| along the first line in equa-
tion (8) is consequence of x33 being zero – which also nulls the
last component of equation (9), while equation (10) follows by ex-
panding the determinant over the last line of (9). Using equation (6)
again, we can rewrite the number density of slopping saddle at
height ⌫ as2
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[� its factorises in odd and even doesn’t it?] where R⇤ and ˜R are
the typical inter critical point separation and inter inflection point
separation defined in equation (A1). Indeed, the novelty of (12)
w.r.t. the classical BBKS formula is the weight |x3ii||x333| which
requires the knowledge of the statistics of the 3rd order derivative
of the field. Note that R is measured in units of ˜R ⇠ 3

4
R⇤ (for

n ⇠ �2, see Appendix A). Let us call n = @N/@r3 the volume
density of doubly critical points. We can forget about the explicit
dependency over r as the field is assumed to be stationary. Intro-
ducing �D(x � ⌫) in the expectation of equation (11) allows us to
write the density of doubly critical points
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The expectations in equation (12) can be evaluated with
the joint statistics of the field and its successive derivatives,
P(x, x

i

, x
ij

, x
ijk

) which involves 20 variables, see Appendix B.
Since the integrant is mute w.r.t. to x3ij for i 6= j and x

ijk

for
i 6= 3 the marginalisation over these variable is straightforward.
When removing the absolute value in equation (12), the expecta-
tion can be evaluated symbolically and reads
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This corresponds to the alternate sum of critical events. [� does
this have a deep topological meaning cf genus? Via the topology
of the excursion set in in space-scale? ] It is plotted in Figure 4 as
a function of ⌫ for different values of n
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. Note that @2N/@r3@R
scale like 1/R4 but is also a function of R via n
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through
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2 One factor of |x11x22| drops between equation (10) and (12) because
of the Dirac of d in equation (7).
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Figure 3. Spherical averaging as a proxy for time evolution. Physically,
slopping saddles are on the slopes of large peaks which will swallow with
cosmic time neighbouring peaks and their filaments. In some sense, the
joint disappearance of peaks, filaments and walls, is a consequence of
the smoothing process, which washes out concurrently peaks, tunnels and
voids.

2.1 Counting critical events in multi-scale landscape

Following Hanami (2001), the number density of critical events in
position-scale space is given by

@2N
@r3@R

⌘ h�(3)D (r� r0)�D(R�R0)i , (4)

where r0 is a (double) critical point in real space and R0 the scale
at which the two critical points merge. Special points where two
critical points merge as a function of R are called critical events
(the slopping saddles of Hanami), for example a maximum and a
filament-saddle. Equivalently, critical events can be defined as crit-
ical points where one of the eigenvalue of the hessian vanishes,
which is also equivalent to having a vanishing determinant.

Let us therefore first define the determinant of the hessian
d(�) ⌘ det(rr�) = �1�2�3, �1 < �2 < �3 are the eigenval-
ues of rr�. In the following, we will use @

R

to denote derivatives
with respect to R. Since critical events are found where d = 0 and
r� = 0, let us rewrite Equation (4) in terms of the properties of
the field, using the coordinate transformation from r, R to r�, d.
This involves the 4D Jacobian of the transformation1

J(d, �) =
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using the fact that for a Gaussian filter
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with � the Laplacian. The fully covariant formulation of the num-
ber density of critical event is then the following
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=
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(3)
D (r�)�D(d)

E
. (7)

1 Note that the determinant can be developed along the first line or the first
column of the Jacobian matrix to find out – as shown by the simplifications
in the next section – that the final result does not depend on @

R

d.

2.1.1 Expression in the frame of the Hessian

The Jacobian is by construction invariant under rotation, so we can
rewrite it in the frame of the eigenvalues without loss of generality.
Developing d into �3

2x11x22x33, the Jacobian can be rewritten in
coordinate, assuming (arbitrarily) that direction 3 is the degenerate
one. Then
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= |x11x22|2|@R
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where the factorisation with |x11x22| along the first line in equa-
tion (8) is consequence of x33 being zero – which also nulls the
last component of equation (9), while equation (10) follows by ex-
panding the determinant over the last line of (9). Using equation (6)
again, we can rewrite the number density of slopping saddle at
height ⌫ as2
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[� its factorises in odd and even doesn’t it?] where R⇤ and ˜R are
the typical inter critical point separation and inter inflection point
separation defined in equation (A1). Indeed, the novelty of (12)
w.r.t. the classical BBKS formula is the weight |x3ii||x333| which
requires the knowledge of the statistics of the 3rd order derivative
of the field. Note that R is measured in units of ˜R ⇠ 3

4
R⇤ (for

n ⇠ �2, see Appendix A). Let us call n = @N/@r3 the volume
density of doubly critical points. We can forget about the explicit
dependency over r as the field is assumed to be stationary. Intro-
ducing �D(x � ⌫) in the expectation of equation (11) allows us to
write the density of doubly critical points
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The expectations in equation (12) can be evaluated with
the joint statistics of the field and its successive derivatives,
P(x, x
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, x
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, x
ijk

) which involves 20 variables, see Appendix B.
Since the integrant is mute w.r.t. to x3ij for i 6= j and x

ijk

for
i 6= 3 the marginalisation over these variable is straightforward.
When removing the absolute value in equation (12), the expecta-
tion can be evaluated symbolically and reads
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This corresponds to the alternate sum of critical events. [� does
this have a deep topological meaning cf genus? Via the topology
of the excursion set in in space-scale? ] It is plotted in Figure 4 as
a function of ⌫ for different values of n

s

. Note that @2N/@r3@R
scale like 1/R4 but is also a function of R via n
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through

3 + n
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2 One factor of |x11x22| drops between equation (10) and (12) because
of the Dirac of d in equation (7).
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2 Cadiou, Pichon et al.

Figure 1. [� snapshot of DM simulation showing disappearance of fil-
aments and peak: so 4 panels corresponding to before and after. We
should use disperse to identify the filament points. Possibly uses IC with
slopping saddle constraints to make the point that they indeed trigger
merger of peaks and filaments. In which case we may have an extra
panel showing the ICs. Make it look good.].

of the density field is changed, because it decrements the number of
components above a given threshold. Mapping the geometry of the
Gaussian random field to the knowledge of these singular events
only is a very efficient and useful compression of the information
encoded in the field. It is efficient because it maps a 3D space into
a finite set of points in 4D. It is useful because astronomers know
how to characterise the corresponding point process in terms of
the properties of the underlying initial Gaussian field. Since these
points bear significance in terms of galaxy formation we can there-
fore relate this process to the underlying power spectrum. Our mo-
tivations are many-fold:

• study the generalised history of accretion: what kind of merg-
ers happens when?
• connect the assembly history to the morphology of a given

galaxy.
• study how the anisotropic large scales modes bias this assem-

bly history.
• relate the various mergers to special events in terms of feed-

back (e.g. quenching by filament disconnect).
• quantify the conditional rate of filament and wall disappear-

ance in conjunction to that of peak.
• quantify the effect of anisotropic tides and connect the excur-

sion set theory to tidal torque theory.
• quantify the non -Gaussian evolution of void slopping saddles

(as a cosmological probe).

Section 3 identifies topologically special events in smoothed
Gaussian random fields. Section 2 forecasts special events through
the coalescence of critical points in the multi-scale landscape. Sec-
tion ?? compares the predictions to realisations of Gaussian ran-
dom fields. Section 4 reframes the present finding in the context of
excursion set theory and merger trees. Finally Section 5 wraps up.

Figure 2. Top panel: the impact of smoothing on a 1D landscape as a proxy
for time evolution. The ridges the of the density field in the 1D+smoothing
space correspond to ’time-lines’ for the peak at a given smoothing. Peak
merger correspond to two such ridges coalescing. Bottom panel: the im-
pact of smoothing on the topology of a given field. Smoothing changes the
topology of the excursion. For instance, between (c) and (d) a tunnel has
disappeared in the bottom left corner of the cube. Since this topology re-
flects that of the cosmic web, it will impact significant changes in galactic
infall with cosmic time.

2 THEORY

Let us first introduce the dimensionless quantities for the field and
its derivatives
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which involve the variance of the derivative of the field up to 3rd
order:
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Z
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so that
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1 = h(r�)2i,�2
2 = h(��)2i,�2

3 = h(r�⇢)2i. (3)
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The theory of merging structures 3

Figure 3. Spherical averaging as a proxy for time evolution. Physically,
slopping saddles are on the slopes of large peaks which will swallow with
cosmic time neighbouring peaks and their filaments. In some sense, the
joint disappearance of peaks, filaments and walls, is a consequence of
the smoothing process, which washes out concurrently peaks, tunnels and
voids.

2.1 Counting critical events in multi-scale landscape

Following Hanami (2001), the number density of critical events in
position-scale space is given by

@2N
@r3@R

⌘ h�(3)D (r� r0)�D(R�R0)i , (4)

where r0 is a (double) critical point in real space and R0 the scale
at which the two critical points merge. Special points where two
critical points merge as a function of R are called critical events
(the slopping saddles of Hanami), for example a maximum and a
filament-saddle. Equivalently, critical events can be defined as crit-
ical points where one of the eigenvalue of the hessian vanishes,
which is also equivalent to having a vanishing determinant.

Let us therefore first define the determinant of the hessian
d(�) ⌘ det(rr�) = �1�2�3, �1 < �2 < �3 are the eigenval-
ues of rr�. In the following, we will use @

R

to denote derivatives
with respect to R. Since critical events are found where d = 0 and
r� = 0, let us rewrite Equation (4) in terms of the properties of
the field, using the coordinate transformation from r, R to r�, d.
This involves the 4D Jacobian of the transformation1
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using the fact that for a Gaussian filter
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with � the Laplacian. The fully covariant formulation of the num-
ber density of critical event is then the following

@2N
@r3@R

=

D
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(3)
D (r�)�D(d)

E
. (7)

1 Note that the determinant can be developed along the first line or the first
column of the Jacobian matrix to find out – as shown by the simplifications
in the next section – that the final result does not depend on @

R

d.

2.1.1 Expression in the frame of the Hessian

The Jacobian is by construction invariant under rotation, so we can
rewrite it in the frame of the eigenvalues without loss of generality.
Developing d into �3

2x11x22x33, the Jacobian can be rewritten in
coordinate, assuming (arbitrarily) that direction 3 is the degenerate
one. Then
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= |x11x22|2|@R

x3||x333|, (10)

where the factorisation with |x11x22| along the first line in equa-
tion (8) is consequence of x33 being zero – which also nulls the
last component of equation (9), while equation (10) follows by ex-
panding the determinant over the last line of (9). Using equation (6)
again, we can rewrite the number density of slopping saddle at
height ⌫ as2
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[� its factorises in odd and even doesn’t it?] where R⇤ and ˜R are
the typical inter critical point separation and inter inflection point
separation defined in equation (A1). Indeed, the novelty of (12)
w.r.t. the classical BBKS formula is the weight |x3ii||x333| which
requires the knowledge of the statistics of the 3rd order derivative
of the field. Note that R is measured in units of ˜R ⇠ 3

4
R⇤ (for

n ⇠ �2, see Appendix A). Let us call n = @N/@r3 the volume
density of doubly critical points. We can forget about the explicit
dependency over r as the field is assumed to be stationary. Intro-
ducing �D(x � ⌫) in the expectation of equation (11) allows us to
write the density of doubly critical points
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The expectations in equation (12) can be evaluated with
the joint statistics of the field and its successive derivatives,
P(x, x

i

, x
ij

, x
ijk

) which involves 20 variables, see Appendix B.
Since the integrant is mute w.r.t. to x3ij for i 6= j and x

ijk

for
i 6= 3 the marginalisation over these variable is straightforward.
When removing the absolute value in equation (12), the expecta-
tion can be evaluated symbolically and reads
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This corresponds to the alternate sum of critical events. [� does
this have a deep topological meaning cf genus? Via the topology
of the excursion set in in space-scale? ] It is plotted in Figure 4 as
a function of ⌫ for different values of n
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. Note that @2N/@r3@R
scale like 1/R4 but is also a function of R via n

s

through
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2 One factor of |x11x22| drops between equation (10) and (12) because
of the Dirac of d in equation (7).
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Figure 3. Spherical averaging as a proxy for time evolution. Physically,
slopping saddles are on the slopes of large peaks which will swallow with
cosmic time neighbouring peaks and their filaments. In some sense, the
joint disappearance of peaks, filaments and walls, is a consequence of
the smoothing process, which washes out concurrently peaks, tunnels and
voids.

2.1 Counting critical events in multi-scale landscape

Following Hanami (2001), the number density of critical events in
position-scale space is given by
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⌘ h�(3)D (r� r0)�D(R�R0)i , (4)

where r0 is a (double) critical point in real space and R0 the scale
at which the two critical points merge. Special points where two
critical points merge as a function of R are called critical events
(the slopping saddles of Hanami), for example a maximum and a
filament-saddle. Equivalently, critical events can be defined as crit-
ical points where one of the eigenvalue of the hessian vanishes,
which is also equivalent to having a vanishing determinant.

Let us therefore first define the determinant of the hessian
d(�) ⌘ det(rr�) = �1�2�3, �1 < �2 < �3 are the eigenval-
ues of rr�. In the following, we will use @

R

to denote derivatives
with respect to R. Since critical events are found where d = 0 and
r� = 0, let us rewrite Equation (4) in terms of the properties of
the field, using the coordinate transformation from r, R to r�, d.
This involves the 4D Jacobian of the transformation1

J(d, �) =

�����
@
R

d ~rd

@
R

~r�T ~r~r�

����� =

�����
@
R

d ~rd

�R~r��T ~r~r�

����� , (5)

using the fact that for a Gaussian filter

@
R

� = �R��, (6)

with � the Laplacian. The fully covariant formulation of the num-
ber density of critical event is then the following

@2N
@r3@R

=

D
J �

(3)
D (r�)�D(d)

E
. (7)

1 Note that the determinant can be developed along the first line or the first
column of the Jacobian matrix to find out – as shown by the simplifications
in the next section – that the final result does not depend on @

R

d.

2.1.1 Expression in the frame of the Hessian

The Jacobian is by construction invariant under rotation, so we can
rewrite it in the frame of the eigenvalues without loss of generality.
Developing d into �3

2x11x22x33, the Jacobian can be rewritten in
coordinate, assuming (arbitrarily) that direction 3 is the degenerate
one. Then

J(d, �)

�1�4
2�3

= |x11x22|
����
@
R

x33 x33i

@
R

x
i

x
ij

���� , (8)

= |x11x22|

��������

@
R

x33 x133 x233 x333

@
R

x1 x11 0 0

@
R

x2 0 x22 0

@
R

x3 0 0 0

��������
, (9)

= |x11x22|2|@R

x3||x333|, (10)

where the factorisation with |x11x22| along the first line in equa-
tion (8) is consequence of x33 being zero – which also nulls the
last component of equation (9), while equation (10) follows by ex-
panding the determinant over the last line of (9). Using equation (6)
again, we can rewrite the number density of slopping saddle at
height ⌫ as2

@4N
@r3@R

=

R
˜R

D
|x11x22||x3ii||x333|�(3)D (x

i

)�D(x33)

E

R3
⇤ ˜R

, (11)

[� its factorises in odd and even doesn’t it?] where R⇤ and ˜R are
the typical inter critical point separation and inter inflection point
separation defined in equation (A1). Indeed, the novelty of (12)
w.r.t. the classical BBKS formula is the weight |x3ii||x333| which
requires the knowledge of the statistics of the 3rd order derivative
of the field. Note that R is measured in units of ˜R ⇠ 3

4
R⇤ (for

n ⇠ �2, see Appendix A). Let us call n = @N/@r3 the volume
density of doubly critical points. We can forget about the explicit
dependency over r as the field is assumed to be stationary. Intro-
ducing �D(x � ⌫) in the expectation of equation (11) allows us to
write the density of doubly critical points

@2n

@R@⌫
=

@5N
@r3@R@⌫

, (12)

=

R
˜R

D
|x11x22||x3ii||x333|�(3)D (x

i

)�D(x33)�D(x� ⌫)
E

R3
⇤ ˜R

,

The expectations in equation (12) can be evaluated with
the joint statistics of the field and its successive derivatives,
P(x, x

i

, x
ij

, x
ijk

) which involves 20 variables, see Appendix B.
Since the integrant is mute w.r.t. to x3ij for i 6= j and x

ijk

for
i 6= 3 the marginalisation over these variable is straightforward.
When removing the absolute value in equation (12), the expecta-
tion can be evaluated symbolically and reads

@2n

@R@⌫

���
±
=

3

p
3(1��̃2

)(25�4
+30�2

(2⌫2�1)�27)R

20

p
10⇡5/2

(9� 5�2
)

5/2R3
⇤ ˜R2

e
� 9⌫2

2(9�5�2) .

(13)
This corresponds to the alternate sum of critical events. [� does
this have a deep topological meaning cf genus? Via the topology
of the excursion set in in space-scale? ] It is plotted in Figure 4 as
a function of ⌫ for different values of n

s

. Note that @2N/@r3@R
scale like 1/R4 but is also a function of R via n

s

through

3 + n
s

(R) = �@ log �2
0

@ logR
, (14)

2 One factor of |x11x22| drops between equation (10) and (12) because
of the Dirac of d in equation (7).
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Figure 4. PDF of the alternate sum of critical events as a function of height
for different values of the effective power index n

s

as labelled. The PDF is
given by equation (13).

where �0(R) is given by equation (2).

2.1.2 Number counts

[~ WIP] We can compute the number of critical events integrated
over all height. This is in particular interesting. To do so, one can
notice that Eq. 11 can be rewritten as

@2N
i

@r3@R
=

R
˜R2R3

⇤
↵�

i

, (15)

↵ ⌘ h|x3ii||x333|�(3)D (x
i

)i, (16)

�
j

⌘ h�D(�j

)

Y

k 6=j

|�
k

|i, (17)

where ↵ is a constant that only depends on the smoothing scale and
the power spectrum. In the case of a power-law power spectrum,
the expectation can be computed explicitly

�1 = �3 =

29� 6

p
6

18

p
10⇡

, (18)

�2 =

2p
15⇡

. (19)

The ratio r2/1 = �2/�1 of the number density of peak-filament
mergers to the number density of filament-wall mergers then reads

r2/1 =

24

p
3

29

p
2� 12

p
3

⇡ 2.05508. (20)

This equation shows that there roughly twice more filament disap-
pearing due to the collapse of a wall than due to a halo merger.

2.1.3 Coalescence type

The aforementioned formalism makes no assumption on the type of
the merging critical points. While the slopping saddles of Hanami
(2001) are clearly central to the theory of mass assembly, the wall-
saddle to filament-saddle and wall-saddle to minima coalescence
also impact the topology of galactic infall, as they destroy tunnels
and voids within the surrounding cosmic web. In order to iden-
tify the various combinations one needs to impose a supplementary
condition on the signs of the (non zero) eigenvalues of the critical
points. For the sloping saddles, they must be both negative, for the
wall saddle they have both signs while for wall-void they should
both be positive.

Figure 5. PDF of the critical events as a function of height for different val-
ues of the effective power index n

s

as labelled. The left bundle corresponds
to void mergers, the middle bundle to filaments mergers and the right bun-
dle to peak mergers. [~ The normalisation should be checked, I find two
order of magnitude difference] [~ update the figure with more recent
data.]

When restricting equation (12) to peak-peak merger, one
should add constraints on the sign of the other two eigenvalues, or
equivalently on the trace and the determinant. Let us call Cond(x)
the argument of the expectation bracket in equation (12). Then,
since for a peak the two eigenvalues must be negative,

@2n

@R@⌫

���
P
=

R
˜R2R3

⇤
hCond(x)⇥(�Trx

(2)
ij

)⇥(detx
(2)
ij

)i . (21)

Conversely, for the filament-filament merger the extra constraint
should read [� needs checking]

@2n

@R@⌫

���
S
=

R
˜R2R3

⇤
hCond(x)⇥(�detx

(2)
ij

)i , (22)

while finally for the void-void merger

@2n

@R@⌫

���
V
=

R
˜R2R3

⇤
hCond(x)⇥(Trx

(2)
ij

)⇥(detx
(2)
ij

)i . (23)

Note that at fixed R the ratio of saddle to peaks is globally
fixed by the available number of peaks and saddles (the latter be-
ing three times more numerous). The resulting expected differen-
tial event counts are shown on figure 5 for various values of n

s

. [�
comment]

2.2 Merger rates in M, z space

It is straightforward to change variable from R to M (= 4
3
⇡⇢̄R3)

and from ⌫ = �
R

/�0 to z using the spherical collapse condition

⌫ �0 = �
c

D(z) where �
c

=

3

20

(12⇡)2/3 = 1.68; (24)

so that for condition c (peak, saddle, void) we have3

@2n

@ logM@z

���
c

=

@2n

@R@⌫

���
c

@R

@ logM

@⌫

@z
=

@2n

@R@⌫

���
c

�
c

dD

dz

R

3

, (25)

where equation (25) is to be evaluated at ⌫(R, z) =

�
c

D(z)/�0(R) via equations (2) and (24).
From equation (25) and equations (21)-(23), we are in a posi-

tion to count how many (peak, filament, void) mergers occur early

3 Note that dD/dz = �Df/(1+z) with f ⌘ dlogD/dlog a ⇠ ⌦

0.6.
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The theory of merging structures 3

Figure 3. Spherical averaging as a proxy for time evolution. Physically,
slopping saddles are on the slopes of large peaks which will swallow with
cosmic time neighbouring peaks and their filaments. In some sense, the
joint disappearance of peaks, filaments and walls, is a consequence of
the smoothing process, which washes out concurrently peaks, tunnels and
voids.

2.1 Counting critical events in multi-scale landscape

Following Hanami (2001), the number density of critical events in
position-scale space is given by

@2N
@r3@R

⌘ h�(3)D (r� r0)�D(R�R0)i , (4)

where r0 is a (double) critical point in real space and R0 the scale
at which the two critical points merge. Special points where two
critical points merge as a function of R are called critical events
(the slopping saddles of Hanami), for example a maximum and a
filament-saddle. Equivalently, critical events can be defined as crit-
ical points where one of the eigenvalue of the hessian vanishes,
which is also equivalent to having a vanishing determinant.

Let us therefore first define the determinant of the hessian
d(�) ⌘ det(rr�) = �1�2�3, �1 < �2 < �3 are the eigenval-
ues of rr�. In the following, we will use @

R

to denote derivatives
with respect to R. Since critical events are found where d = 0 and
r� = 0, let us rewrite Equation (4) in terms of the properties of
the field, using the coordinate transformation from r, R to r�, d.
This involves the 4D Jacobian of the transformation1

J(d, �) =

�����
@
R

d ~rd

@
R

~r�T ~r~r�

����� =

�����
@
R

d ~rd

�R~r��T ~r~r�

����� , (5)

using the fact that for a Gaussian filter

@
R

� = �R��, (6)

with � the Laplacian. The fully covariant formulation of the num-
ber density of critical event is then the following

@2N
@r3@R

=

D
J �

(3)
D (r�)�D(d)

E
. (7)

1 Note that the determinant can be developed along the first line or the first
column of the Jacobian matrix to find out – as shown by the simplifications
in the next section – that the final result does not depend on @

R

d.

2.1.1 Expression in the frame of the Hessian

The Jacobian is by construction invariant under rotation, so we can
rewrite it in the frame of the eigenvalues without loss of generality.
Developing d into �3

2x11x22x33, the Jacobian can be rewritten in
coordinate, assuming (arbitrarily) that direction 3 is the degenerate
one. Then

J(d, �)

�1�4
2�3

= |x11x22|
����
@
R

x33 x33i

@
R

x
i

x
ij

���� , (8)

= |x11x22|

��������

@
R

x33 x133 x233 x333

@
R

x1 x11 0 0

@
R

x2 0 x22 0

@
R

x3 0 0 0

��������
, (9)

= |x11x22|2|@R

x3||x333|, (10)

where the factorisation with |x11x22| along the first line in equa-
tion (8) is consequence of x33 being zero – which also nulls the
last component of equation (9), while equation (10) follows by ex-
panding the determinant over the last line of (9). Using equation (6)
again, we can rewrite the number density of slopping saddle at
height ⌫ as2

@4N
@r3@R

=

R
˜R

D
|x11x22||x3ii||x333|�(3)D (x

i

)�D(x33)

E

R3
⇤ ˜R

, (11)

[� its factorises in odd and even doesn’t it?] where R⇤ and ˜R are
the typical inter critical point separation and inter inflection point
separation defined in equation (A1). Indeed, the novelty of (12)
w.r.t. the classical BBKS formula is the weight |x3ii||x333| which
requires the knowledge of the statistics of the 3rd order derivative
of the field. Note that R is measured in units of ˜R ⇠ 3

4
R⇤ (for

n ⇠ �2, see Appendix A). Let us call n = @N/@r3 the volume
density of doubly critical points. We can forget about the explicit
dependency over r as the field is assumed to be stationary. Intro-
ducing �D(x � ⌫) in the expectation of equation (11) allows us to
write the density of doubly critical points

@2n

@R@⌫
=

@5N
@r3@R@⌫

, (12)

=

R
˜R

D
|x11x22||x3ii||x333|�(3)D (x

i

)�D(x33)�D(x� ⌫)
E

R3
⇤ ˜R

,

The expectations in equation (12) can be evaluated with
the joint statistics of the field and its successive derivatives,
P(x, x

i

, x
ij

, x
ijk

) which involves 20 variables, see Appendix B.
Since the integrant is mute w.r.t. to x3ij for i 6= j and x

ijk

for
i 6= 3 the marginalisation over these variable is straightforward.
When removing the absolute value in equation (12), the expecta-
tion can be evaluated symbolically and reads

@2n

@R@⌫

���
±
=

3

p
3(1��̃2

)(25�4
+30�2

(2⌫2�1)�27)R

20

p
10⇡5/2

(9� 5�2
)

5/2R3
⇤ ˜R2

e
� 9⌫2

2(9�5�2) .

(13)
This corresponds to the alternate sum of critical events. [� does
this have a deep topological meaning cf genus? Via the topology
of the excursion set in in space-scale? ] It is plotted in Figure 4 as
a function of ⌫ for different values of n

s

. Note that @2N/@r3@R
scale like 1/R4 but is also a function of R via n

s

through

3 + n
s

(R) = �@ log �2
0

@ logR
, (14)

2 One factor of |x11x22| drops between equation (10) and (12) because
of the Dirac of d in equation (7).
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Figure 4. PDF of the alternate sum of critical events as a function of height
for different values of the effective power index n

s

as labelled. The PDF is
given by equation (13).

where �0(R) is given by equation (2).

2.1.2 Number counts

[~ WIP] We can compute the number of critical events integrated
over all height. This is in particular interesting. To do so, one can
notice that Eq. 11 can be rewritten as

@2N
i

@r3@R
=

R
˜R2R3

⇤
↵�

i

, (15)

↵ ⌘ h|x3ii||x333|�(3)D (x
i

)i, (16)

�
j

⌘ h�D(�j

)

Y

k 6=j

|�
k

|i, (17)

where ↵ is a constant that only depends on the smoothing scale and
the power spectrum. In the case of a power-law power spectrum,
the expectation can be computed explicitly

�1 = �3 =

29� 6

p
6

18

p
10⇡

, (18)

�2 =

2p
15⇡

. (19)

The ratio r2/1 = �2/�1 of the number density of peak-filament
mergers to the number density of filament-wall mergers then reads

r2/1 =

24

p
3

29

p
2� 12

p
3

⇡ 2.05508. (20)

This equation shows that there roughly twice more filament disap-
pearing due to the collapse of a wall than due to a halo merger.

2.1.3 Coalescence type

The aforementioned formalism makes no assumption on the type of
the merging critical points. While the slopping saddles of Hanami
(2001) are clearly central to the theory of mass assembly, the wall-
saddle to filament-saddle and wall-saddle to minima coalescence
also impact the topology of galactic infall, as they destroy tunnels
and voids within the surrounding cosmic web. In order to iden-
tify the various combinations one needs to impose a supplementary
condition on the signs of the (non zero) eigenvalues of the critical
points. For the sloping saddles, they must be both negative, for the
wall saddle they have both signs while for wall-void they should
both be positive.

Figure 5. PDF of the critical events as a function of height for different val-
ues of the effective power index n

s

as labelled. The left bundle corresponds
to void mergers, the middle bundle to filaments mergers and the right bun-
dle to peak mergers. [~ The normalisation should be checked, I find two
order of magnitude difference] [~ update the figure with more recent
data.]

When restricting equation (12) to peak-peak merger, one
should add constraints on the sign of the other two eigenvalues, or
equivalently on the trace and the determinant. Let us call Cond(x)
the argument of the expectation bracket in equation (12). Then,
since for a peak the two eigenvalues must be negative,

@2n

@R@⌫

���
P
=

R
˜R2R3

⇤
hCond(x)⇥(�Trx

(2)
ij

)⇥(detx
(2)
ij

)i . (21)

Conversely, for the filament-filament merger the extra constraint
should read [� needs checking]

@2n

@R@⌫

���
S
=

R
˜R2R3

⇤
hCond(x)⇥(�detx

(2)
ij

)i , (22)

while finally for the void-void merger

@2n

@R@⌫

���
V
=

R
˜R2R3

⇤
hCond(x)⇥(Trx

(2)
ij

)⇥(detx
(2)
ij

)i . (23)

Note that at fixed R the ratio of saddle to peaks is globally
fixed by the available number of peaks and saddles (the latter be-
ing three times more numerous). The resulting expected differen-
tial event counts are shown on figure 5 for various values of n

s

. [�
comment]

2.2 Merger rates in M, z space

It is straightforward to change variable from R to M (= 4
3
⇡⇢̄R3)

and from ⌫ = �
R

/�0 to z using the spherical collapse condition

⌫ �0 = �
c

D(z) where �
c

=

3

20

(12⇡)2/3 = 1.68; (24)

so that for condition c (peak, saddle, void) we have3

@2n

@ logM@z

���
c

=

@2n

@R@⌫

���
c

@R

@ logM

@⌫

@z
=

@2n

@R@⌫

���
c

�
c

dD

dz

R

3

, (25)

where equation (25) is to be evaluated at ⌫(R, z) =

�
c

D(z)/�0(R) via equations (2) and (24).
From equation (25) and equations (21)-(23), we are in a posi-

tion to count how many (peak, filament, void) mergers occur early

3 Note that dD/dz = �Df/(1+z) with f ⌘ dlogD/dlog a ⇠ ⌦

0.6.
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n -2 -1 0
˙

ζ3
¸

2.48 ϵ -0.946 3.48 ϵ -1.25 4.75 ϵ -1.59
˙

ζ2J1

¸

0.327-0.722 ϵ 0.361-0.346 ϵ 0.521-0.298 ϵ
˙

ζJ2
1

¸

2.09 ϵ -0.462 0.948 ϵ +0.123 0.207 ϵ +0.519

⟨ζJ2⟩ 2.57 ϵ -0.747 2.90 ϵ -0.973 3.20 ϵ -1.15
˙

q2ζ
¸

2.64 ϵ -0.630 2.59 ϵ -0.475 2.62ϵ -0.385
˙

q2J1

¸

1.37-2.53 ϵ 1.37-2.53 ϵ 1.37-2.53 ϵ
˙

J3
1

¸

3.58-7.99 ϵ 3.58-7.99 ϵ 3.58-7.99 ϵ

⟨J1J2⟩ -0.353 ϵ -0.602 -0.353 ϵ -0.602 -0.353 ϵ -0.602

⟨J3⟩ 3.47 ϵ -2.69 3.47 ϵ -2.69 3.47 ϵ -2.69

Table III: the cumulents for powerlaw spectra ϵ =

2. Extrema

For extrema, sign constraints must be imposed on the eigenvalues depending on which set is sought. First of all,
for the total number of extrema

nmax =

ˆ ∞

0
dw̃

ˆ w̃

−w̃
dṽ

ˆ ∞

3w̃−ṽ
dũ (−I3)P tot

ext (ũ, ṽ, w̃)

=
29

√
15 − 18

√
10

1800π2
+

5
√

5

24π2
√

6π

(

〈

q2J1

〉

−
8

21

〈

J1
3
〉

+
10

21
⟨J1J2⟩

)

(47)

n−++ =

ˆ ∞

0
dw̃

ˆ w̃

−w̃
dṽ

ˆ 3w̃−ṽ

ṽ
dũ I3 P tot

ext (ũ, ṽ, w̃)

=
29

√
15 + 18

√
10

1800π2
+

5
√

5

24π2
√

6π

(

〈

q2J1

〉

−
8

21

〈

J1
3
〉

+
10

21
⟨J1J2⟩

)

(48)

B. critical lines

Accounting for the first order correction

nskl =

ˆ

P (x)
∏

1<i≤3

δD(xi)λidx = nskl,G +
1

6

ˆ

G(x)

⎛

⎝

∏

1<i≤3

λiδD(xi)

⎞

⎠

∑

i,j,k

κijkhijk(x)dx

C. Walls

Accounting for the first order correction

nw =

ˆ

P (x)δD(x3)λ3dx = nw,G +
1

6

ˆ

G(x)δD(x3)λ3

∑

i,j,k

κijkhijk(x)dx

V. DISCUSSION

1. how well is the edgeworth expansion converging? in particular does it still hold in the regime where the skeleton’s
length is sensitive to dark energy acceleration ?

2. is the skeleton length the best probe? Differential length ? Other LSS indicator ? (skeleton is bias independant)

skeleton

extrema

section / 1/�2

In (invariant) Hessian frame:

packing tube problem:  transverse curvature.

packing sphere problem: curvature.

n

ext

=
Z
P(x)

Y

1i3

�

D

(xi)�idx

volume / 1/�1�2

BBKS

SPCP

Monday, November 7, 2011

�3

�3
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If	the	field	is	Gaussian	(large	scales/early	:mes),	the	total	number	density	of	
cri:cal	points	then	reads	

Peak	theory:	Gaussian	predic(ons

2D 3D

R?

R0

And	as	a	func:on	of	peak	height	(analy:cal	in	2D,	not	in	3D)	:	

maxmin

filamentswalls

R? = �1/�2 = distance between peaks

Thursday, 11April, 19
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Figure 4. PDF of the alternate sum of critical events as a function of height
for different values of the effective power index n

s

as labelled. The PDF is
given by equation (13).

where �0(R) is given by equation (2).

2.1.2 Number counts

[~ WIP] We can compute the number of critical events integrated
over all height. This is in particular interesting. To do so, one can
notice that Eq. 11 can be rewritten as
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where ↵ is a constant that only depends on the smoothing scale and
the power spectrum. In the case of a power-law power spectrum,
the expectation can be computed explicitly

�1 = �3 =

29� 6

p
6
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p
10⇡

, (18)

�2 =

2p
15⇡

. (19)

The ratio r2/1 = �2/�1 of the number density of peak-filament
mergers to the number density of filament-wall mergers then reads

r2/1 =

24

p
3

29

p
2� 12

p
3

⇡ 2.05508. (20)

This equation shows that there roughly twice more filament disap-
pearing due to the collapse of a wall than due to a halo merger.

2.1.3 Coalescence type

The aforementioned formalism makes no assumption on the type of
the merging critical points. While the slopping saddles of Hanami
(2001) are clearly central to the theory of mass assembly, the wall-
saddle to filament-saddle and wall-saddle to minima coalescence
also impact the topology of galactic infall, as they destroy tunnels
and voids within the surrounding cosmic web. In order to iden-
tify the various combinations one needs to impose a supplementary
condition on the signs of the (non zero) eigenvalues of the critical
points. For the sloping saddles, they must be both negative, for the
wall saddle they have both signs while for wall-void they should
both be positive.

Figure 5. PDF of the critical events as a function of height for different val-
ues of the effective power index n

s

as labelled. The left bundle corresponds
to void mergers, the middle bundle to filaments mergers and the right bun-
dle to peak mergers. [~ The normalisation should be checked, I find two
order of magnitude difference] [~ update the figure with more recent
data.]

When restricting equation (12) to peak-peak merger, one
should add constraints on the sign of the other two eigenvalues, or
equivalently on the trace and the determinant. Let us call Cond(x)
the argument of the expectation bracket in equation (12). Then,
since for a peak the two eigenvalues must be negative,
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Conversely, for the filament-filament merger the extra constraint
should read [� needs checking]
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while finally for the void-void merger
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Note that at fixed R the ratio of saddle to peaks is globally
fixed by the available number of peaks and saddles (the latter be-
ing three times more numerous). The resulting expected differen-
tial event counts are shown on figure 5 for various values of n

s

. [�
comment]

2.2 Merger rates in M, z space

It is straightforward to change variable from R to M (= 4
3
⇡⇢̄R3)

and from ⌫ = �
R

/�0 to z using the spherical collapse condition

⌫ �0 = �
c

D(z) where �
c

=

3

20

(12⇡)2/3 = 1.68; (24)

so that for condition c (peak, saddle, void) we have3
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where equation (25) is to be evaluated at ⌫(R, z) =

�
c

D(z)/�0(R) via equations (2) and (24).
From equation (25) and equations (21)-(23), we are in a posi-

tion to count how many (peak, filament, void) mergers occur early

3 Note that dD/dz = �Df/(1+z) with f ⌘ dlogD/dlog a ⇠ ⌦

0.6.
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Figure 4. PDF of the alternate sum of critical events as a function of height
for different values of the effective power index n

s

as labelled. The PDF is
given by equation (13).

where �0(R) is given by equation (2).

2.1.2 Number counts

[~ WIP] We can compute the number of critical events integrated
over all height. This is in particular interesting. To do so, one can
notice that Eq. 11 can be rewritten as
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where ↵ is a constant that only depends on the smoothing scale and
the power spectrum. In the case of a power-law power spectrum,
the expectation can be computed explicitly
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This equation shows that there roughly twice more filament disap-
pearing due to the collapse of a wall than due to a halo merger.

2.1.3 Coalescence type

The aforementioned formalism makes no assumption on the type of
the merging critical points. While the slopping saddles of Hanami
(2001) are clearly central to the theory of mass assembly, the wall-
saddle to filament-saddle and wall-saddle to minima coalescence
also impact the topology of galactic infall, as they destroy tunnels
and voids within the surrounding cosmic web. In order to iden-
tify the various combinations one needs to impose a supplementary
condition on the signs of the (non zero) eigenvalues of the critical
points. For the sloping saddles, they must be both negative, for the
wall saddle they have both signs while for wall-void they should
both be positive.

Figure 5. PDF of the critical events as a function of height for different val-
ues of the effective power index n

s

as labelled. The left bundle corresponds
to void mergers, the middle bundle to filaments mergers and the right bun-
dle to peak mergers. [~ The normalisation should be checked, I find two
order of magnitude difference] [~ update the figure with more recent
data.]

When restricting equation (12) to peak-peak merger, one
should add constraints on the sign of the other two eigenvalues, or
equivalently on the trace and the determinant. Let us call Cond(x)
the argument of the expectation bracket in equation (12). Then,
since for a peak the two eigenvalues must be negative,
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Conversely, for the filament-filament merger the extra constraint
should read [� needs checking]
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while finally for the void-void merger
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Note that at fixed R the ratio of saddle to peaks is globally
fixed by the available number of peaks and saddles (the latter be-
ing three times more numerous). The resulting expected differen-
tial event counts are shown on figure 5 for various values of n
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2.2 Merger rates in M, z space

It is straightforward to change variable from R to M (= 4
3
⇡⇢̄R3)

and from ⌫ = �
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/�0 to z using the spherical collapse condition
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D(z) where �
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where equation (25) is to be evaluated at ⌫(R, z) =

�
c

D(z)/�0(R) via equations (2) and (24).
From equation (25) and equations (21)-(23), we are in a posi-

tion to count how many (peak, filament, void) mergers occur early

3 Note that dD/dz = �Df/(1+z) with f ⌘ dlogD/dlog a ⇠ ⌦

0.6.

MNRAS 000, 000–000 (0000)

Applica(on:	merger	rates

Map event count to (z,M)

power index

Work in progress

4 Cadiou, Pichon et al.

Figure 4. PDF of the alternate sum of critical events as a function of height
for different values of the effective power index n

s

as labelled. The PDF is
given by equation (13).

where �0(R) is given by equation (2).

2.1.2 Number counts

[~ WIP] We can compute the number of critical events integrated
over all height. This is in particular interesting. To do so, one can
notice that Eq. 11 can be rewritten as
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where ↵ is a constant that only depends on the smoothing scale and
the power spectrum. In the case of a power-law power spectrum,
the expectation can be computed explicitly
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This equation shows that there roughly twice more filament disap-
pearing due to the collapse of a wall than due to a halo merger.

2.1.3 Coalescence type

The aforementioned formalism makes no assumption on the type of
the merging critical points. While the slopping saddles of Hanami
(2001) are clearly central to the theory of mass assembly, the wall-
saddle to filament-saddle and wall-saddle to minima coalescence
also impact the topology of galactic infall, as they destroy tunnels
and voids within the surrounding cosmic web. In order to iden-
tify the various combinations one needs to impose a supplementary
condition on the signs of the (non zero) eigenvalues of the critical
points. For the sloping saddles, they must be both negative, for the
wall saddle they have both signs while for wall-void they should
both be positive.

Figure 5. PDF of the critical events as a function of height for different val-
ues of the effective power index n

s

as labelled. The left bundle corresponds
to void mergers, the middle bundle to filaments mergers and the right bun-
dle to peak mergers. [~ The normalisation should be checked, I find two
order of magnitude difference] [~ update the figure with more recent
data.]

When restricting equation (12) to peak-peak merger, one
should add constraints on the sign of the other two eigenvalues, or
equivalently on the trace and the determinant. Let us call Cond(x)
the argument of the expectation bracket in equation (12). Then,
since for a peak the two eigenvalues must be negative,
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Conversely, for the filament-filament merger the extra constraint
should read [� needs checking]
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Note that at fixed R the ratio of saddle to peaks is globally
fixed by the available number of peaks and saddles (the latter be-
ing three times more numerous). The resulting expected differen-
tial event counts are shown on figure 5 for various values of n
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2.2 Merger rates in M, z space

It is straightforward to change variable from R to M (= 4
3
⇡⇢̄R3)

and from ⌫ = �
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/�0 to z using the spherical collapse condition
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D(z) where �
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=
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so that for condition c (peak, saddle, void) we have3
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where equation (25) is to be evaluated at ⌫(R, z) =
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c

D(z)/�0(R) via equations (2) and (24).
From equation (25) and equations (21)-(23), we are in a posi-

tion to count how many (peak, filament, void) mergers occur early

3 Note that dD/dz = �Df/(1+z) with f ⌘ dlogD/dlog a ⇠ ⌦

0.6.

MNRAS 000, 000–000 (0000)

Thursday, 11April, 19



On the connectivity of halos
Compute frequency of filament merger compared to halo merger in the vicinity of a 
halo merger event

⇒ Excess probability of halo merger followed by filament merger

WIP
12

Radius

Fi
la

m
en

t t
o 

pe
ak

 ra
tio Excess of 

probability of 
finding filament 
merger compare 
to halo merger 
after a halo 
merger

More filament merger

Less filament merger

3

4

3

d

The theory of merging structures 5

Figure 6. PDF of the critical events as a function of log mass for different
values of the effective power index n

s

as labelled. The three bundles are the
same as in Figure 5. [� preliminary]

or late in the accretion history of a certain mass or within some
mass range, via straightforward integration. This also allows us to
quantify the rate of small mergers within some time sequence.

For instance, equation (25) together with equation (12) yield
the number of expected mergers involving satellite of mass M
at redshift z if a peak-saddle condition is imposed within equa-
tion (12), or a filament merger of mass M at redshift z if a saddle-
saddle condition is imposed, or a wall merger if a saddle-void con-
dition is imposed. Note that for collapsing filaments and walls the
�
c

threshold should be different (Pogosyan et al. 1998).
Figure 6 shows the merger rate of peaks, filaments and voids

as a function of the mass of non linearity.

2.2.1 Rare event limit

For the large ⌫ limit, equation (13) yields

@2n

@ logM@z

���
c

/ ⌫2

M
exp

✓
� ⌫2

2(1� 5
9
�2

)

◆
, (26)

so that the merger rate scale like Mns/3, with an exponential cut off
in M (ns+3)/3 given that ⌫2 / ��2

0 / Rns+3 / M (ns+3)/3. Note
that the cutoff is 1/(1 � 5

9
�2

) faster than for the Press Schechter
mass function. [� check]

2.3 Clustering of critical events in R, r space

From the joint two-point count of critical events, their clustering,
⇠(s) can be defined as

1 + ⇠(s) =
hcond(x)cond(y)i

hcond(x)i2 , (27)

with

s ⌘
⇣ r

x

� r
yp

R
x

R
y

,
R

y

R
x

⌘
, (28)

the event separation between x(0) and y(s). Evaluating the expec-
tation in equation (27) requires full knowledge of the joint statistics
of the field P(x, x

i

, x
ij

, x
ijk

, y, y
i

, y
ij

, y
ijk

) (involving 40 vari-
ables). Note that we cannot generally assume that the orientation of
the two slopping saddle are aligned w.r.t. the vector separation, so
the covariant version of cond(x) is given by the argument of the
expectation in equation (7).

Equation (27) can be amended to account for the nature of the

Figure 7. clustering

critical event, which allows us to compute the auto-correlation of
peak merger on the one hand, and the cross correlation of peak and
filament merger on the other hand as

1+⇠
p

=

hcond
p

(x)cond
p

(y)i
hcond

p

(x)i2 , 1+⇠
f

=

hcond
f

(x)cond
p

(y)i
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f

(x)ihcond
p

(x)i ,

with new conditions obeying cond

p

(x) ⌘ cond(x)⇥(�Trx
(2)
ij

)⇥
⇥(detx

(2)
ij

) and cond

f

(x) ⌘ cond(x) ⇥(Trx
(2)
ij

)⇥(detx
(2)
ij

).
The ratio of these two correlations is a measure of the relative
‘proximity’ of the two events. [� do the factors of R give us
a scaling for free?] Since this ratio is small, it means the rate at
which filaments disappear matches the merger rate, so that the typ-
ical number of filament per halo remains constant through cosmic
time. [� to check :-)]

The height of the event may also be added in the definition of
cond

p

(x) and cond

f

(x) via an extra �D(x� ⌫), so as to compute
proximity as a function of peak rareness. We expect the relative
clustering ⇠

f

/⇠
p

to decrease with peak height, to match the fact
that the connectivity of halos increases with peak height.

This is illustrated in Figure 7 which shows the

2.4 Impact of cosmic evolution

For the edgeworth expansion joint statistics of the field at x,
P(x, x

i

, x
ij

, x
ijk

), involving the hierarchy of cumulents. [� ici
il faut reflechir a comment relier les 2 temps du probleme, celui
associe au lissage versus celui associe aux non gaussianites.]

P(x) = PG(x)

 
1 +

1X

k=3

�k�2 hHk

(x)i
�2k�2

·H
k

(x)

!
, (29)

where H
k

is a vector of orthogonal polynomials w.r.t. to the Ker-
nel PG obeying H

k

= (�1)

k@kPG/@x
k/PG while at tree order

in PT, hH
k

(x)i/�2k�2 is independent of � below k = 6. By in-
spection, expectation of this PDF will only involve �, �̃ and �(z).
[� check -1] From the PDF (29), the cosmic evolution of the rate
of void of volume V merging during time interval �z can be re-
expressed via equation (25) as

@2n

@V@z =

@2n

@V@z
���
G

+ �(z)
@2n

@V@z
���
NG

, (30)

where the first term reflects cosmic evolution while the second term
reflects clustering.

2.5 Conditional merger rates in vicinity of larger tides

From this equation, we will also compute the conditional counts,
subject to a given large scale critical point at some distance s from
the running point:

hcond(x)�D(yi)| det yij |i (31)

This requires full knowledge of the joint statistics of the field at
x(0) and y(s), P(x, x

i

, x
ij

, x
ijk

, y, y
i

, y
ij

) (involving 30 vari-
ables). The correlations of the PDF involves the covariance of the
field and its derivatives computed at two smoothing scales, R and
R

c

corresponding to the proxy for the timeline of the halos on the
one hand and the large scale structure on the other hand. We can
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6.	Résumé6.	Résumé

Global	connec(vity	for	GRF

How	many	filaments	connect	to	a	node?

Number	 of	 connected	 saddles	 are	 measured	
using	 the	Disperse	 skeleton	 algorithm	 (Sousbie
+11)	in	GRF	realisa:ons.

Can	we	predict	the	mean	connec(vity?
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Because	each	filament	goes	through	one	and	only	one	saddle	pt,	on	average:

          = 4                                                 in 2D GRF

          =                                                    in 3D GRF

6.	Résumé6.	Résumé

Global	connec(vity	for	GRF:	theory

p
2 p

3
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Because	each	filament	goes	through	one	and	only	one	saddle	pt,	on	average:

          = 4                                                 in 2D GRF

          =                                                    in 3D GRF

6.	Résumé6.	Résumé

Global	connec(vity	for	GRF:	theory

In	d	dimensions,	(relying	on	numerical	integra:ons):

Cubic
Lattice

Defects? Asymptotic result?

p
2 p

3
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Peak
Saddle Void

2D "ideal" cosmic 
environment : 

Mean local cosmic initial condition 
homeomorphic to such crystal

2D	connec(vity:	topology
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wall saddle

tube saddle

minimum

maximum

3D  "ideal" cosmic 
environment  

Mean local cosmic field quasi 
homeomorphic to such crystal

3D	connec(vity:	topology
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Full	distribu:on	of	connec:vity:

3D

n s=0

n s=-1

n s=-2

n s=-3
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connect ivity k

PHkL
6.	Résumé6.	Résumé

GRF	connec(vity	PDF:	dependence	with	scale/ns

Weak	dependency	on	ns
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6.	Résumé6.	Résumé

GRF	connec(vity	PDF:	dependence	with	scale/ns

Weak	dependency	on	ns

no R? dependency!!
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Dependence	with	peak	height:

3D
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6.	Résumé6.	Résumé

GRF	connec(vity:	dependence	with	peak	height

The	rarer	the	peak,	the	more	connected

⌫ = �/�
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Connectivity of the Cosmic Web

Joint PDF of  and ⌫ in 3D
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Notable Result:

• High peaks tend to have more
connections

• Peaks with large number of
connections are predominantly high

• mean h|⌫i, 6.5 (⌫= 2), 10 (⌫= 3)
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GRF	connec(vity:	dependence	with	peak	height
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6.	Résumé6.	Résumé

Connec(vity	versus	Mass	in	LCDM

Connec:vity	as	a	func:on	of	Mass	in	Horizon-4π:	1	000	000	halos.
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6.	Résumé6.	Résumé

Connec(vity	versus	Mass	in	LCDM

Connec:vity	as	a	func:on	of	Mass	in	Horizon-4π:	1	000	000	halos.
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Analogy with sphere packing pb

Global	connec(vity	for	GRF:	IDEA?
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⇠p-p(r)

30

Peak	theory:	Clustering	(2	point	sta(s(cs)

Same	ideas	can	be	used	to	also	predict	the	clustering	of	peaks	by	means	of	their	2	point	
correla:on	func:on	(also	applies	to	peak	saddle	etc.):

Bias expansion

Exclusion zone

Baldauf, SC+16

exclusion is essential to understand connectivity
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Connectivity of the Cosmic Web

Towards connectivity theory
Idea: Count the number of saddles up to R

max

. . . , conditional on the
properties of the peak. But what is R

max

? Some characteristic size of a
peak-patch around the peak. Let us look (in 3D) where the neighbouring peaks
are using peak-peak correlation function

ν=2
ν=3
ν=4

0 1 2 3 4

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

�/��

ξ �
��
�
(�)

They are at the end of the exclusion zone, which for high central peak ⌫� 2 it
increases with ⌫ roughly linearly

R

ma x

⇡ (0.9+⌫/5)R
p

R

max

= 1.2, 1.5, 1.8 R

p

, ⌫= 2, 3, 4

Global	connec(vity	for	GRF:	theory

SS S

S

P
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Connectivity of the Cosmic Web

Estimating  by counting saddles to the next peak

��
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���� ������ ν
〈κ
|ν
〉

Number of saddles to distance R

ma x

conditional on the height ⌫ of the peak
translates to peak connectivity h|⌫i

Global	connec(vity	for	GRF:	theory

S S

S

P

From the Peak-Saddle correlation function

Subtle interplay between clustering of 
saddles and zone of influence of peak.

3D

2D
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Connectivity of the Cosmic Web

Connectivity of a non-Gaussian field differ from the Gaussian

• In cosmological simulations, as density becomes more
non-Gaussian, connectivity of the Cosmic Web decreases

• This leads to model dependent history of the connectivity at
different redshifts.

P ()

�=��
�=���
�=�

� �� �� ������

����

����

����

����

����

κ

�(
κ)

hi

����
���

��� ��� ��� ��� ��� ������

���

���

���

���

�(�)

〈κ
〉

Connec(vity:	evolu(on	with	cosmic	(me

Filaments	merge	in	a	cosmology-dependent	way!
Thursday, 11April, 19



Connectivity of the Cosmic Web

Non-Gaussian 3D Extrema Counts (Gay et al, 2011)
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( cubic moments evaluate, with some spectral dependence, to ⇡ 0.1, see Gay,
Pichon, Pogosyan, 2011)

Theory:	evolu(on	with	cosmic	(me

scales like D(z) ⇥ a number
z }| {

With	Gram	Charlier	expansion,
	predic:on	at	arbitrary	order
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6.	Résumé6.	Résumé

Local	mul(plicity	and	bifurca(on	points

For	galaxy	forma:on,	what	ma^ers	most	is	how	many	filament	connect	locally	onto	a	galaxy.
At	small	enough	scale,	a	peak	is	always	ellipsoidal	so	that	only	two	branches	of	filament	s:ck	
out.	 Then	those	branches	bifurcate.	Some	bifurca:ons	 appear	so	close	to	 the	peak	that	they	
are	physically	irrelevant.	Hence	we	will	define	the	mul(plicity	as	the	local	number	of	filaments.
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6.	Résumé6.	Résumé

Local	mul(plicity	and	bifurca(on	points

For	galaxy	forma:on,	what	ma^ers	most	is	how	many	filament	connect	locally	onto	a	galaxy.
At	small	enough	scale,	a	peak	is	always	ellipsoidal	so	that	only	two	branches	of	filament	s:ck	
out.	 Then	those	branches	bifurcate.	Some	bifurca:ons	 appear	so	close	to	 the	peak	that	they	
are	physically	irrelevant.	Hence	we	will	define	the	mul(plicity	as	the	local	number	of	filaments.

µ = � n
bifurcations

µ ⇡ 3

µ ⇡ 4

in	2D

in	3D

Connectivity of the Cosmic Web

Multiplicity µ of the peaks
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3D: hµi= 4

• Notable Results: average number of branches from a peak

• Interesting link: Adhesion model that enforces these values by construction

•
N

bifurcations

= �µ
• Issues: not all branches have high density and are physically important
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• Issues: not all branches have high density and are physically important
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6.	Résumé6.	Résumé

Local	mul(plicity

The	denser	the	environment,	the	higher	the	mul:plicity	
(e.g.	bringing	less	coherent	angular	momentum	and	genera:ng	more	ellipsoidal	galaxies)

3D 2D

Thursday, 11April, 19
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6.	Résumé6.	Résumé

Local	mul(plicity:	towards	a	theore(cal	predic(on

Peak

2D peaks on 
the sphere

Filaments

Let	us	count	filament	crossings	at	a	sphere	of	radius	R	around	the	central	peak…

Thursday, 11April, 19



6.	Résumé6.	RésuméLocal	mul(plicity:	towards	a	theore(cal	predic(on

Size of peak patches 
depends on their height
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Connectivity of the Cosmic Web

Not all filaments are equally prominent. Counting important
ones

��all νf

ν=3,νf>1
ν=3,νf>2

ν=4, νf>1
ν=4, νf>2

0.0 0.5 1.0 1.5 2.0
�/��

2

4

6

8

10
<�����(��ν �)|���(��ν)>

• Number of dense ⌫
f

> 2 filamentary bridges is increasing with the height
of the central peak

• Not very rare ⌫= 3 central peak has two (branches of) dense filaments,
i.e it sits in one dominant filament on average

• Rare ⌫= 4 peak is at intersection of three prominent branches.

Local	mul(plicity:	towards	a	theore(cal	predic(on

Typically,	 two	 to	 three	
dense	filaments	dominate	
and	 therefore	 define	 a	
plane	of	accre:on….

3 higher contrast filaments

Thursday, 11April, 19
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6.	Résumé6.	Résumé

Local	mul(plicity:	towards	a	theore(cal	predic(on

Typically,	 two	to	 three	dense	filaments	 dominate	 and	therefore	define	a	plane	of	accre:on…	 in	
agreement	with	numerical	simula:on	(Danovich+12)	and	observa:ons	of	plane	of	satellites	around	
galaxies.

2 higher contrast filaments

Thursday, 11April, 19



On the connectivity of halos
Compute frequency of filament merger compared to halo merger in the vicinity of a 
halo merger event

⇒ Excess probability of halo merger followed by filament merger

WIP
12

Radius

Fi
la

m
en

t t
o 

pe
ak

 ra
tio Excess of 

probability of 
finding filament 
merger compare 
to halo merger 
after a halo 
merger

More filament merger

Less filament merger

3

4

3

d

The theory of merging structures 5

Figure 6. PDF of the critical events as a function of log mass for different
values of the effective power index n

s

as labelled. The three bundles are the
same as in Figure 5. [� preliminary]

or late in the accretion history of a certain mass or within some
mass range, via straightforward integration. This also allows us to
quantify the rate of small mergers within some time sequence.

For instance, equation (25) together with equation (12) yield
the number of expected mergers involving satellite of mass M
at redshift z if a peak-saddle condition is imposed within equa-
tion (12), or a filament merger of mass M at redshift z if a saddle-
saddle condition is imposed, or a wall merger if a saddle-void con-
dition is imposed. Note that for collapsing filaments and walls the
�
c

threshold should be different (Pogosyan et al. 1998).
Figure 6 shows the merger rate of peaks, filaments and voids

as a function of the mass of non linearity.

2.2.1 Rare event limit

For the large ⌫ limit, equation (13) yields

@2n

@ logM@z

���
c

/ ⌫2

M
exp

✓
� ⌫2

2(1� 5
9
�2

)

◆
, (26)

so that the merger rate scale like Mns/3, with an exponential cut off
in M (ns+3)/3 given that ⌫2 / ��2

0 / Rns+3 / M (ns+3)/3. Note
that the cutoff is 1/(1 � 5

9
�2

) faster than for the Press Schechter
mass function. [� check]

2.3 Clustering of critical events in R, r space

From the joint two-point count of critical events, their clustering,
⇠(s) can be defined as

1 + ⇠(s) =
hcond(x)cond(y)i

hcond(x)i2 , (27)

with

s ⌘
⇣ r

x

� r
yp

R
x

R
y

,
R

y

R
x

⌘
, (28)

the event separation between x(0) and y(s). Evaluating the expec-
tation in equation (27) requires full knowledge of the joint statistics
of the field P(x, x

i

, x
ij

, x
ijk

, y, y
i

, y
ij

, y
ijk

) (involving 40 vari-
ables). Note that we cannot generally assume that the orientation of
the two slopping saddle are aligned w.r.t. the vector separation, so
the covariant version of cond(x) is given by the argument of the
expectation in equation (7).

Equation (27) can be amended to account for the nature of the

Figure 7. clustering

critical event, which allows us to compute the auto-correlation of
peak merger on the one hand, and the cross correlation of peak and
filament merger on the other hand as

1+⇠
p

=

hcond
p

(x)cond
p

(y)i
hcond

p

(x)i2 , 1+⇠
f

=

hcond
f

(x)cond
p

(y)i
hcond

f

(x)ihcond
p

(x)i ,

with new conditions obeying cond

p

(x) ⌘ cond(x)⇥(�Trx
(2)
ij

)⇥
⇥(detx

(2)
ij

) and cond

f

(x) ⌘ cond(x) ⇥(Trx
(2)
ij

)⇥(detx
(2)
ij

).
The ratio of these two correlations is a measure of the relative
‘proximity’ of the two events. [� do the factors of R give us
a scaling for free?] Since this ratio is small, it means the rate at
which filaments disappear matches the merger rate, so that the typ-
ical number of filament per halo remains constant through cosmic
time. [� to check :-)]

The height of the event may also be added in the definition of
cond

p

(x) and cond

f

(x) via an extra �D(x� ⌫), so as to compute
proximity as a function of peak rareness. We expect the relative
clustering ⇠

f

/⇠
p

to decrease with peak height, to match the fact
that the connectivity of halos increases with peak height.

This is illustrated in Figure 7 which shows the

2.4 Impact of cosmic evolution

For the edgeworth expansion joint statistics of the field at x,
P(x, x

i

, x
ij

, x
ijk

), involving the hierarchy of cumulents. [� ici
il faut reflechir a comment relier les 2 temps du probleme, celui
associe au lissage versus celui associe aux non gaussianites.]

P(x) = PG(x)

 
1 +

1X

k=3

�k�2 hHk

(x)i
�2k�2

·H
k

(x)

!
, (29)

where H
k

is a vector of orthogonal polynomials w.r.t. to the Ker-
nel PG obeying H

k

= (�1)

k@kPG/@x
k/PG while at tree order

in PT, hH
k

(x)i/�2k�2 is independent of � below k = 6. By in-
spection, expectation of this PDF will only involve �, �̃ and �(z).
[� check -1] From the PDF (29), the cosmic evolution of the rate
of void of volume V merging during time interval �z can be re-
expressed via equation (25) as

@2n

@V@z =

@2n

@V@z
���
G

+ �(z)
@2n

@V@z
���
NG

, (30)

where the first term reflects cosmic evolution while the second term
reflects clustering.

2.5 Conditional merger rates in vicinity of larger tides

From this equation, we will also compute the conditional counts,
subject to a given large scale critical point at some distance s from
the running point:

hcond(x)�D(yi)| det yij |i (31)

This requires full knowledge of the joint statistics of the field at
x(0) and y(s), P(x, x

i

, x
ij

, x
ijk

, y, y
i

, y
ij

) (involving 30 vari-
ables). The correlations of the PDF involves the covariance of the
field and its derivatives computed at two smoothing scales, R and
R

c

corresponding to the proxy for the timeline of the halos on the
one hand and the large scale structure on the other hand. We can

MNRAS 000, 000–000 (0000)

Applica(on:	preserving	cosmic	connec(vity
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Upshot
ho

riz
on

-A
GN

‣ Connec:vity	=	number	of	filament	connected
‣ κ=	4	in	2D		κ	=	6.11	in	3D			(for	GRF)

‣ Mu:plicity	=	number	of	local	filament	connected
‣ μ~3	in	2D	μ	~	4	in	3D

‣ Both	can	be	predicted	from	first	principle

‣ Hence	useful	for	cosmology	&	galaxy	forma:on

Connectivity is a packaging pb because of exclusion
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Upshot
ho

riz
on

-A
GN

‣ Set	of	cri:cal	events	=	useful	topological	compression	of	ICs	

	•	impacts	‘dressed’	mergers:	ML	on	morphology?

	(i.e.	cosmic	evolu:on	of	peaks	and	their	filaments	and	walls).

‣ Clustering	of	filament	disappearance	is	consistent	

with	preserving	connec=vity	of	peaks	as	they	merge:

	•	the	rarer	the	peak	the	higher	the	rate	of	filaments	merging.

‣ Rate	of	wall	disappearance		=	dark	energy	probe,	

depend	on	the	growth	rate	of	structure	and	σ2/σ1σ3.	
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‣ Peak and constrained random field theories are paramount to 
understand the birth and growth of the cosmic web

‣ Many analytical results can be obtained in the weakly non-linear regime

‣ The topology and geometry of the cosmic web carries important 
cosmological information and is key for galaxy evolution.

‣ In particular, we now have a precise understanding of the connectivity 
of the cosmic web (the cosmic crystal) and its evolution through 
statistics of critical events.

Conclusion

IMHO	of	interest	beyond	cosmology
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Galaxy distribution, gas density — Horizon-AGN simulation (Dubois+14)

METHOD

X-Ray detected groups

filaments from galaxy distribution

Applica(on:	impact	of	AGN	feedback?	
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Galaxy extraction 
redshift, masses

Filament extraction 
in slices centred at the 

group redshift 
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Reconstructed filaments z=1.2

z=0.5
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Redshift and mass range constrained by galaxy photometric properties: 
We work in 0.5<z<1.2 with all galaxies more massive than 10   solar mass10

Filament extraction in 2D around groups 
Darragh-Ford, Laigle et al. in prep
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Galaxy extraction 
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Group connectivity 
Measuring connectivity with photometric filaments

connectivity 1

connectivity 1 or 2 ?

connectivity 2 

connectivity 3 connectivity 4 

connectivity 3 

BGG: brightest group galaxy

Multiplicity          
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Group connectivity 
Testing the impact of photometric uncertainties

Hydrodynamical simulation Horizon-AGN 
Dubois+14

Adding errors 
(including systematics)

Mock image

3D reference skeleton Virtually observed  
skeleton

-1                             0                             1

-1                             0                             1

Confrontation

RA

DEC

3D reference skeleton

Mock observation generation Mock observation generation 
(photometry, photo-z, photometric masses)

Group Multiplicity in Horizon-AGN         

Virtual (Lensed) Image

Virtual galaxies
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Group connectivity 
Testing the impact of photometric uncertainties

Hydrodynamical simulation Horizon-AGN 
Dubois+14

Adding errors 
(including systematics)

Mock image

3D reference skeleton Virtually observed  
skeleton

-1                             0                             1

-1                             0                             1

Confrontation

RA

DEC

3D reference skeleton

Mock observation generation Mock observation generation 
(photometry, photo-z, photometric masses)

Group Multiplicity in Horizon-AGN         
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Group connectivity 
Measuring connectivity with photometric filaments

photo-z uncertainties decrease connectivity

Hz-AGN connectivity COSMOS connectivity

Darragh-Ford, Laigle et al. in prep

Photometric 
redshift

Multiplicity          
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Group connectivity 
Impact of connectivity on group properties

Halo Mass Brightest group galaxy Mass

Mean connectivity increases with halo/BGG mass
see also 

Theoretical predictions from  
Codis et al. 2018

Darragh-Ford, Laigle et al. in prep

Multiplicity          
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Horizon-noAGN Horizon-AGN

The impact of connectivity on BGG properties 
Interpretation from Horizon-AGN simulation

Darragh-Ford, Laigle et al. in prep

Multiplicity          
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At a given halo mass, “AGN quenching efficiency” is higher at higher connectivity
HORIZON-AGN simulation result: 

• Connectivity: proxy for mass of accreted matter; more accretion => higher feedback? 
• higher connectivity => accretion more isotropic

Darragh-Ford, Laigle, et al in prep

Group connectivity 
Impact of connectivity on group properties

Halo MassHalo Mass

Multiplicity          
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At a given halo mass, “AGN quenching efficiency” is higher at higher connectivity
HORIZON-AGN simulation result: 

• Connectivity: proxy for mass of accreted matter; more accretion => higher feedback? 
• higher connectivity => accretion more isotropic
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The integrated moment is then expanded using Wick’s theorem:
D
�(1)(k1)�(1)(k2)�(1)(k4)�(1)(k5)

E
=
D
�(1)(k1)�(1)(k2)

ED
�(1)(k4)�(1)(k5)

E
+

D
�(1)(k1)�(1)(k4)

ED
�(1)(k2)�(1)(k5)

E
+
D
�(1)(k1)�(1)(k5)

ED
�(1)(k2)�(1)(k4)

E
. (F8)

The first term leads to F2(k4,�k4) which vanishes, while the second and third terms are equivalent:

I = 2

ˆ
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Integrating over k4 and k5 gives:

I = 2

ˆ
d3k1d3k2F�,⇥,⇤(k1,k2)P (k1)P (k2) , (F10)

where we use the notation F�,⇥,⇤(k1,k2) = F�,⇥,⇤(k1,k2,�k1,�k2) (see equation (86) in the main text). Finally, combining
the three terms in equation (F2) gives us the cumulant:
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Let us now take into account the smoothing of the field over a scale, R; the cumulants become:
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Equation (F11) is the general expression for the cumulants used in the main text. The appearance of the dependence on the
relative orientation of the wave vectors k1 and k2 in the filter factor W (|k1 + k2|R) is the source of most of the complexity
of the theory and, in some sense, the essence of perturbation theory. It reflects the fact that the nonlinear field, smoothed at
radius R, is not determined solely by the average quantities at this radius, but also but what happens at shorter scales. For
Gaussian filtering, the filter function can be expanded in Legendre series with respect to k1 · k2 (Lokas et al. 1994):
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Then, F�,⇥,⇤ can be decomposed on the basis of the Legendre polynomials and the integration over the angles then just
requires the orthogonality relation of the Legendre polynomials:ˆ 1

�1

dxPm(x)Pn(x) =
2

2m + 1
�m,n. (F13)

It also means that in practice, one does not need Legendre polynomials of order higher than the degree of the integrated term
(here, 2 from F2 plus the number of derivatives) and can truncate the expansion. The result is an integral of Bessel functions,
which can be expressed using hypergeometric functions. The results for all the independent third order cumulants is given in
Appendix F2.

F2 Gaussian filtered scale invariant geometric cumulants

Using the above defined procedure, the cumulants can be computed for a Gaussian filter. For a scale-invariant power-
spectrum of index n (called ns in the main text), the results can be analytically expressed using the hypergeometric function
2F1(a, b, c, x). For example, the result for the skewness is already known (Lokas et al. 1994):
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The integrated moment is then expanded using Wick’s theorem:
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The first term leads to F2(k4,�k4) which vanishes, while the second and third terms are equivalent:

I = 2

ˆ
d3k1d3k2d3k4d3k5F�,⇥,⇤(k1,k2,k4,k5)�D(k1 + k4)P (k1)�

D(k2 + k5)P (k2). (F9)

Integrating over k4 and k5 gives:
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d3k1d3k2F�,⇥,⇤(k1,k2)P (k1)P (k2) , (F10)

where we use the notation F�,⇥,⇤(k1,k2) = F�,⇥,⇤(k1,k2,�k1,�k2) (see equation (86) in the main text). Finally, combining
the three terms in equation (F2) gives us the cumulant:
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Let us now take into account the smoothing of the field over a scale, R; the cumulants become:
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Equation (F11) is the general expression for the cumulants used in the main text. The appearance of the dependence on the
relative orientation of the wave vectors k1 and k2 in the filter factor W (|k1 + k2|R) is the source of most of the complexity
of the theory and, in some sense, the essence of perturbation theory. It reflects the fact that the nonlinear field, smoothed at
radius R, is not determined solely by the average quantities at this radius, but also but what happens at shorter scales. For
Gaussian filtering, the filter function can be expanded in Legendre series with respect to k1 · k2 (Lokas et al. 1994):
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Then, F�,⇥,⇤ can be decomposed on the basis of the Legendre polynomials and the integration over the angles then just
requires the orthogonality relation of the Legendre polynomials:ˆ 1

�1

dxPm(x)Pn(x) =
2

2m + 1
�m,n. (F13)

It also means that in practice, one does not need Legendre polynomials of order higher than the degree of the integrated term
(here, 2 from F2 plus the number of derivatives) and can truncate the expansion. The result is an integral of Bessel functions,
which can be expressed using hypergeometric functions. The results for all the independent third order cumulants is given in
Appendix F2.

F2 Gaussian filtered scale invariant geometric cumulants

Using the above defined procedure, the cumulants can be computed for a Gaussian filter. For a scale-invariant power-
spectrum of index n (called ns in the main text), the results can be analytically expressed using the hypergeometric function
2F1(a, b, c, x). For example, the result for the skewness is already known (Lokas et al. 1994):
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The integrated moment is then expanded using Wick’s theorem:
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Integrating over k4 and k5 gives:
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where we use the notation F�,⇥,⇤(k1,k2) = F�,⇥,⇤(k1,k2,�k1,�k2) (see equation (86) in the main text). Finally, combining
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Equation (F11) is the general expression for the cumulants used in the main text. The appearance of the dependence on the
relative orientation of the wave vectors k1 and k2 in the filter factor W (|k1 + k2|R) is the source of most of the complexity
of the theory and, in some sense, the essence of perturbation theory. It reflects the fact that the nonlinear field, smoothed at
radius R, is not determined solely by the average quantities at this radius, but also but what happens at shorter scales. For
Gaussian filtering, the filter function can be expanded in Legendre series with respect to k1 · k2 (Lokas et al. 1994):
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Then, F�,⇥,⇤ can be decomposed on the basis of the Legendre polynomials and the integration over the angles then just
requires the orthogonality relation of the Legendre polynomials:ˆ 1
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�m,n. (F13)

It also means that in practice, one does not need Legendre polynomials of order higher than the degree of the integrated term
(here, 2 from F2 plus the number of derivatives) and can truncate the expansion. The result is an integral of Bessel functions,
which can be expressed using hypergeometric functions. The results for all the independent third order cumulants is given in
Appendix F2.

F2 Gaussian filtered scale invariant geometric cumulants

Using the above defined procedure, the cumulants can be computed for a Gaussian filter. For a scale-invariant power-
spectrum of index n (called ns in the main text), the results can be analytically expressed using the hypergeometric function
2F1(a, b, c, x). For example, the result for the skewness is already known (Lokas et al. 1994):
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The integrated moment is then expanded using Wick’s theorem:
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The first term leads to F2(k4,�k4) which vanishes, while the second and third terms are equivalent:
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Integrating over k4 and k5 gives:

I = 2

ˆ
d3k1d3k2F�,⇥,⇤(k1,k2)P (k1)P (k2) , (F10)

where we use the notation F�,⇥,⇤(k1,k2) = F�,⇥,⇤(k1,k2,�k1,�k2) (see equation (86) in the main text). Finally, combining
the three terms in equation (F2) gives us the cumulant:
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Let us now take into account the smoothing of the field over a scale, R; the cumulants become:

2

ˆ
d3k1d3k2 [F�,⇥,⇤(k1,k2) + F⇥,⇤,�(k1,k2) + F⇤,�,⇥(k1,k2)] P (k1)P (k2)W (k1R)W (k2R)W (|k1 + k2|R) . (F11)

Equation (F11) is the general expression for the cumulants used in the main text. The appearance of the dependence on the
relative orientation of the wave vectors k1 and k2 in the filter factor W (|k1 + k2|R) is the source of most of the complexity
of the theory and, in some sense, the essence of perturbation theory. It reflects the fact that the nonlinear field, smoothed at
radius R, is not determined solely by the average quantities at this radius, but also but what happens at shorter scales. For
Gaussian filtering, the filter function can be expanded in Legendre series with respect to k1 · k2 (Lokas et al. 1994):
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Then, F�,⇥,⇤ can be decomposed on the basis of the Legendre polynomials and the integration over the angles then just
requires the orthogonality relation of the Legendre polynomials:ˆ 1
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It also means that in practice, one does not need Legendre polynomials of order higher than the degree of the integrated term
(here, 2 from F2 plus the number of derivatives) and can truncate the expansion. The result is an integral of Bessel functions,
which can be expressed using hypergeometric functions. The results for all the independent third order cumulants is given in
Appendix F2.

F2 Gaussian filtered scale invariant geometric cumulants

Using the above defined procedure, the cumulants can be computed for a Gaussian filter. For a scale-invariant power-
spectrum of index n (called ns in the main text), the results can be analytically expressed using the hypergeometric function
2F1(a, b, c, x). For example, the result for the skewness is already known (Lokas et al. 1994):
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The theory of merging structures 3

Figure 3. Spherical averaging as a proxy for time evolution. Physically,
slopping saddles are on the slopes of large peaks which will swallow with
cosmic time neighbouring peaks and their filaments. In some sense, the
joint disappearance of peaks, filaments and walls, is a consequence of
the smoothing process, which washes out concurrently peaks, tunnels and
voids.

2.1 Counting critical events in multi-scale landscape

Following Hanami (2001), the number density of critical events in
position-scale space is given by

@2N
@r3@R

⌘ h�(3)D (r� r0)�D(R�R0)i , (4)

where r0 is a (double) critical point in real space and R0 the scale
at which the two critical points merge. Special points where two
critical points merge as a function of R are called critical events
(the slopping saddles of Hanami), for example a maximum and a
filament-saddle. Equivalently, critical events can be defined as crit-
ical points where one of the eigenvalue of the hessian vanishes,
which is also equivalent to having a vanishing determinant.

Let us therefore first define the determinant of the hessian
d(�) ⌘ det(rr�) = �1�2�3, �1 < �2 < �3 are the eigenval-
ues of rr�. In the following, we will use @

R

to denote derivatives
with respect to R. Since critical events are found where d = 0 and
r� = 0, let us rewrite Equation (4) in terms of the properties of
the field, using the coordinate transformation from r, R to r�, d.
This involves the 4D Jacobian of the transformation1
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�����
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using the fact that for a Gaussian filter

@
R

� = �R��, (6)

with � the Laplacian. The fully covariant formulation of the num-
ber density of critical event is then the following

@2N
@r3@R

=

D
J �

(3)
D (r�)�D(d)

E
. (7)

1 Note that the determinant can be developed along the first line or the first
column of the Jacobian matrix to find out – as shown by the simplifications
in the next section – that the final result does not depend on @

R

d.

2.1.1 Expression in the frame of the Hessian

The Jacobian is by construction invariant under rotation, so we can
rewrite it in the frame of the eigenvalues without loss of generality.
Developing d into �3

2x11x22x33, the Jacobian can be rewritten in
coordinate, assuming (arbitrarily) that direction 3 is the degenerate
one. Then
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= |x11x22|
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, (9)

= |x11x22|2|@R

x3||x333|, (10)

where the factorisation with |x11x22| along the first line in equa-
tion (8) is consequence of x33 being zero – which also nulls the
last component of equation (9), while equation (10) follows by ex-
panding the determinant over the last line of (9). Using equation (6)
again, we can rewrite the number density of slopping saddle at
height ⌫ as2
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i

)�D(x33)

E

R3
⇤ ˜R

, (11)

[� its factorises in odd and even doesn’t it?] where R⇤ and ˜R are
the typical inter critical point separation and inter inflection point
separation defined in equation (A1). Indeed, the novelty of (12)
w.r.t. the classical BBKS formula is the weight |x3ii||x333| which
requires the knowledge of the statistics of the 3rd order derivative
of the field. Note that R is measured in units of ˜R ⇠ 3

4
R⇤ (for

n ⇠ �2, see Appendix A). Let us call n = @N/@r3 the volume
density of doubly critical points. We can forget about the explicit
dependency over r as the field is assumed to be stationary. Intro-
ducing �D(x � ⌫) in the expectation of equation (11) allows us to
write the density of doubly critical points

@2n

@R@⌫
=

@5N
@r3@R@⌫

, (12)

=

R
˜R

D
|x11x22||x3ii||x333|�(3)D (x

i

)�D(x33)�D(x� ⌫)
E

R3
⇤ ˜R

,

The expectations in equation (12) can be evaluated with
the joint statistics of the field and its successive derivatives,
P(x, x

i

, x
ij

, x
ijk

) which involves 20 variables, see Appendix B.
Since the integrant is mute w.r.t. to x3ij for i 6= j and x

ijk

for
i 6= 3 the marginalisation over these variable is straightforward.
When removing the absolute value in equation (12), the expecta-
tion can be evaluated symbolically and reads

@2n

@R@⌫

���
±
=

3

p
3(1��̃2

)(25�4
+30�2

(2⌫2�1)�27)R

20

p
10⇡5/2

(9� 5�2
)

5/2R3
⇤ ˜R2

e
� 9⌫2

2(9�5�2) .

(13)
This corresponds to the alternate sum of critical events. [� does
this have a deep topological meaning cf genus? Via the topology
of the excursion set in in space-scale? ] It is plotted in Figure 4 as
a function of ⌫ for different values of n

s

. Note that @2N/@r3@R
scale like 1/R4 but is also a function of R via n

s

through

3 + n
s

(R) = �@ log �2
0

@ logR
, (14)

2 One factor of |x11x22| drops between equation (10) and (12) because
of the Dirac of d in equation (7).
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