Forecasting special events in cosmic history

IAP / KIAS C. Cadiou, S. Codis, C. Gay D. Pogosyan, C. Laigle, T.Sousbie, M. Musso

Kyoto

A 15-year long project initiated by S. Colombi

Statistics of Merging Peaks of Random Gaussian Fluctuations: Skeleton Tree Formalism

Hitoshi HANAMI

Physics Section, Faculty of Humanities and Social Sciences, Iwate University, Morioka 020 JAPAN

Thursday, 11April, 19

25

Context: geometry & Topology

Large scale filamentary structure connecting clusters of galaxies is evident both in data and simulations

Sloan DS Survey

Skeleton & Walls of Horizon-AGN

Geometry of LSS as a probe of cosmology

Context: feeding galaxies via cold flows?

Large scale filamentary structure connecting clusters of galaxies is evident both in data and simulations

Filamentary accretion regulating stellar formation / AGN feedback/AM acquisition

Context: skeleton tree

The skeleton tree formalism

Can we build a merger-tree like structure from the initial conditions?

 \Rightarrow Yes! Study the topological structure of the ICs at different scales (Hanami 2001)

Extend Hanami '01 to other critical events

Context: skeleton tree

The skeleton tree formalism

Can we build a merger-tree like structure from the initial conditions?

Xgal

 \Rightarrow Yes! Study the topological structure of the ICs at different scales (Hanami 2001)

Context

Spherical collapse: time-smoothing duality

Understand special events in evolution of cosmic web

Context

Spherical collapse: time-smoothing duality

Understand special events in evolution of cosmic web

Context

Change in excursion's topology impacts galaxy formation

1D outlook: ridges in position-smoothing landscape

Building the skeleton tree

- GRF smoothed at ≠ scales
- identify critical points
- build skeleton tree
- find critical events

Critical event PDF

$$\frac{\partial^2 \mathcal{N}}{\partial r^3 \partial R} \equiv \left\langle \delta_{\rm D}^{(3)} (\mathbf{r} - \mathbf{r}_0) \delta_{\rm D} (R - R_0) \right\rangle,\,$$

where \mathbf{r}_0 is a (double) critical point in real space and R_0 the scale at which the two critical points merge.

Critical event PDF

$$\frac{\partial^2 \mathcal{N}}{\partial r^3 \partial R} \equiv \langle \delta_{\rm D}^{(3)} (\mathbf{r} - \mathbf{r}_0) \delta_{\rm D} (R - R_0) \rangle \,,$$

where \mathbf{r}_0 is a (double) critical point in real space and R_0 the scale at which the two critical points merge.

$$d(\delta) \equiv \det(\nabla \nabla \delta) = \lambda_1 \lambda_2 \lambda_3$$

$$\frac{\partial^2 \mathcal{N}}{\partial r^3 \partial R} = \left\langle J \, \delta_{\mathrm{D}}^{(3)}(\nabla \delta) \delta_{\mathrm{D}}(d) \right\rangle$$

$$J(d,\delta) = \begin{vmatrix} \partial_R d & \nabla d \\ \partial_R \nabla \delta^T & \nabla \nabla \delta \end{vmatrix}$$

Critical event PDF

$$\frac{\partial^2 \mathcal{N}}{\partial r^3 \partial R} \equiv \langle \delta_{\rm D}^{(3)} (\mathbf{r} - \mathbf{r}_0) \delta_{\rm D} (R - R_0) \rangle \,,$$

where \mathbf{r}_0 is a (double) critical point in real space and R_0 the scale at which the two critical points merge.

$$d(\delta) \equiv \det(\nabla \nabla \delta) = \lambda_1 \lambda_2 \lambda_3$$

$$\begin{aligned} \frac{\partial^2 \mathcal{N}}{\partial r^3 \partial R} &= \left\langle J \, \delta_{\mathrm{D}}^{(3)}(\nabla \delta) \delta_{\mathrm{D}}(d) \right\rangle \\ J(d,\delta) &= \left| \begin{array}{cc} \partial_R d & \vec{\nabla} d \\ \partial_R \vec{\nabla} \delta^T & \vec{\nabla} \vec{\nabla} \delta \\ & \delta^T & \vec{\nabla} \vec{\nabla} \delta \\ & \text{for a Gaussian filter} \\ & \partial_R \delta &= -R \Delta \delta \end{aligned} \right|, \end{aligned}$$

Critical event

$$\frac{\langle \delta_{\mathrm{D}}^{(3)}(\mathbf{r} - \left| \begin{array}{c} \frac{J(d,\delta)}{\sigma_{1}\sigma_{2}^{4}\sigma_{3}} = |x_{11}x_{22}| \left| \begin{array}{c} \partial_{R}x_{33} & x_{33i} \\ \partial_{R}x_{i} & x_{ij} \right| , \\ \hline \\ \text{louble) critica} \\ \text{vo critical poi} \\ \text{ot}(\nabla\nabla\delta) \\ = |x_{11}x_{22}| \left| \begin{array}{c} \partial_{R}x_{33} & x_{133} & x_{233} & x_{333} \\ \partial_{R}x_{1} & x_{11} & 0 & 0 \\ \partial_{R}x_{2} & 0 & x_{22} & 0 \\ \partial_{R}x_{3} & 0 & 0 & 0 \\ \end{array} \right| \\ = |x_{11}x_{22}|^{2}|\partial_{R}x_{3}||x_{333}|, \\ = \left\langle J \delta_{\mathrm{D}}^{(3)}(\nabla\delta)\delta_{\mathrm{D}}(d) \right\rangle \right| x^{2} \frac{\delta}{\sigma_{0}}, x_{k} \equiv \frac{\nabla_{k}\delta}{\sigma_{1}}, x_{kl} \equiv \frac{\nabla_{k}\nabla\delta}{\sigma_{2}}, x_{klm} \equiv \frac{\nabla_{m}\nabla_{l}\nabla_{k}}{\sigma_{3}} \\ = \left| \begin{array}{c} \partial_{R}d & \nabla\nabla_{l} \\ \partial_{R}\nabla\delta^{T} & \nabla\nabla\delta \\ \end{array} \right| = \left| \begin{array}{c} \partial_{R}d & \nabla\nabla_{l} \\ -R\nabla\Delta\delta^{T} & \nabla\nabla\delta \\ \end{array} \right|, \\ \text{for a Gaussian filter} \\ \partial_{R}\delta = -R\Delta\delta \end{array} \right|$$

δ

Derivation

Derivation

$$\frac{\partial^2 n}{\partial R \partial \nu} = \frac{\partial^5 \mathcal{N}}{\partial r^3 \partial R \partial \nu},$$

$$= \frac{R}{\tilde{R}} \frac{\left\langle |x_{11} x_{22}(x_{3ii}| | x_{333}) \delta_{\mathrm{D}}^{(3)}(x_i) \delta_{\mathrm{D}}(x_{33}) \delta_{\mathrm{D}}(x-\nu) \right\rangle}{R_*^3 \tilde{R}},$$
E.g. number density of peak-filament mergers to the number density of filament-wall mergers
$$r_{2/1} = \frac{24\sqrt{3}}{29\sqrt{2} - 12\sqrt{3}} \approx 2.05508.$$

$$\stackrel{\bullet}{}_{2.5}$$

$$\stackrel{\bullet}{}_{-2.5}$$

$$\stackrel{\bullet}{}_{-1.5}$$

$$\stackrel{$$

Derivation

$$\frac{\partial^2 n}{\partial R \partial \nu} = \frac{\partial^5 \mathcal{N}}{\partial r^3 \partial R \partial \nu},$$

$$= \frac{R}{\tilde{R}} \frac{\left\langle |x_{11}x_{22}| (x_{3ii}||x_{333}) \delta_{\mathrm{D}}^{(3)}(x_i) \delta_{\mathrm{D}}(x_{33}) \delta_{\mathrm{D}}(x-\nu) \right\rangle}{R_{*}^3 \tilde{R}},$$
E.g. number density of peak-filament mergers to the number density of filament-wall mergers
$$r_{2/1} = \frac{24\sqrt{3}}{29\sqrt{2} - 12\sqrt{3}} \approx 2.05508.$$

$$v_{-S}$$

$$\int_{0}^{\infty} \frac{1}{8\sqrt{5} \frac{r^2}{r^2} (6-5r)^3 (5r^2-9)^2} e^{\frac{r^2}{r^2} \frac{r^2}{r^2}} e^{\frac{r^2}{r^2}} e^{\frac{r^2}{r^2}} e^{\frac{r^2}{r^2}} \frac{r^2}{r^2}} e^{\frac{r^2}{r^2}} e^{\frac{r^2}{r^2}}} e^{\frac{r^2}{r^2}} e^{\frac{r^2}{r^2}} e^{\frac{r^2}{r^2}} e^{\frac{r^2}{r^2}} e^{\frac{r^2}{r^2}} e^{\frac{r^2}{r^2}}} e^{\frac{r^2}{r^2}} e^{\frac{r^2}{r^2}}} e^{\frac{r^2}{r^2}} e^{\frac{r^2}{r^2}} e^{\frac{r^2}{r^2}}} e^{\frac{r^2}{r^2}} e^{\frac{r^2}{r^2}} e^{\frac{r^2}{r^2}}} e^{\frac{r^2}{r^2}} e^{\frac{r^2}{r^2}}} e^{\frac{r^2}{r^2}} e^{\frac{r^2}{r^2}}} e^{\frac{r^2}{r^2}} e^{\frac{r^2}{r^2}}} e^{\frac{r^2}{r^2}} e^{\frac{r^2}{r^2}}} e^{\frac{r^2}{r^2}} e^{\frac{r^2}{r^2}}} e^{\frac{r^2}{r^2}}} e^{\frac{r^2}{r^2}} e^{\frac{r^2}{r^2}}} e^{\frac{r^2}{r^2}}} e^{\frac{r^2}{r^2}}} e^{\frac{r^2}{r^2}}} e^{\frac{r^2}{r^2}}}$$

In (invariant) Hessian frame:

extrema

$$n_{\text{ext}} = \int \mathcal{P}(\mathbf{x}) \prod_{1 \le i \le 3} \delta_{\mathrm{D}}(x_i) \lambda_i d\mathbf{x}$$

volume $\propto 1/\lambda_1\lambda_2\lambda_3$

packing sphere problem: curvature.

Monday, November 7, 2011

Peak theory: Gaussian predictions

If the field is Gaussian (large scales/early times), the total number density of critical points then reads

$$\begin{split} 3\mathsf{D} \\ \langle n_{\max} \rangle &= \langle n_{\min} \rangle = \frac{29\sqrt{15} - 18\sqrt{10}}{1800\pi^2 R_\star^3} \\ \langle n_{\mathrm{sadf}} \rangle &= \langle n_{\mathrm{sadw}} \rangle = \frac{29\sqrt{15} + 18\sqrt{10}}{1800\pi^2 R_\star^3}, \end{split}$$

18

And as a function of peak height (analytical in 2D, not in 3D) :

Application: merger rates

Application: preserving cosmic connectivity

On the connectivity of halos

Compute frequency of filament merger compared to halo merger in the vicinity of a halo merger event $\xi_{
m hf}(r)/\xi_{
m hh}(r)$.

Global connectivity for GRF

Can we predict the mean connectivity?

Global connectivity for GRF: theory

Because each filament goes through one and only one saddle pt, on average:

$$\begin{aligned} \langle \kappa \rangle &= \frac{2\bar{n}_{\rm sad}}{\bar{n}_{\rm max}} \\ &= 4 & \text{in 2D GRF} \\ &= \frac{2\left(1057 + 348\sqrt{6}\right)}{625} \approx 6.11 \text{ in 3D GRF} \end{aligned}$$

Global connectivity for GRF: theory

Because each filament goes through one and only one saddle pt, on average:

$$\begin{aligned} \langle \kappa \rangle &= \frac{2\bar{n}_{\text{sad}}}{\bar{n}_{\text{max}}} \\ &= 4 & \text{in 2D GRF} \\ &= \frac{2\left(1057 + 348\sqrt{6}\right)}{625} \approx 6.11 \text{ in 3D GRF} \end{aligned}$$

In d dimensions, (relying on numerical integrations):

2D connectivity: topology

3D connectivity: topology

GRF connectivity PDF: dependence with scale/n_s

Full distribution of connectivity:

GRF connectivity PDF: dependence with scale/n_s

Full distribution of connectivity:

GRF connectivity: dependence with peak height

Dependence with peak height:

The rarer the peak, the more connected

GRF connectivity: dependence with peak height

Joint PDF of κ and ν in 3D

Notable Result:

- High peaks tend to have more connections
- Peaks with large number of connections are predominantly high
- mean $\langle \kappa | \nu \rangle$, 6.5 ($\nu = 2$), 10 ($\nu = 3$)

Connectivity versus Mass in LCDM

Connectivity as a function of Mass in Horizon- 4π : 1 000 000 halos.

Connectivity versus Mass in LCDM

Connectivity as a function of Mass in Horizon- 4π : 1 000 000 halos.

Global connectivity for GRF: IDEA?

Analogy with sphere packing pb

Peak theory: Clustering (2 point statistics)

Same ideas can be used to also predict the **clustering of peaks** by means of their 2 point correlation function (also applies to peak saddle etc.):

Global connectivity for GRF: theory

Towards connectivity theory

Idea: Count the number of saddles up to R_{\max} ..., conditional on the properties of the peak. But what is R_{\max} ? Some characteristic size of a peak-patch around the peak. Let us look (in 3D) where the neighbouring peaks are using peak-peak correlation function

They are at the end of the exclusion zone, which for high central peak $\nu \ge 2$ it increases with ν roughly linearly

 $R_{max} \approx (0.9 + \nu/5)R_p$ $R_{max} = 1.2, 1.5, 1.8 R_p, \nu = 2, 3, 4$

Thursday, 11April, 19

Global connectivity for GRF: theory

Estimating κ by counting saddles to the next peak

Number of saddles to distance R_{max} conditional on the height v of the peak translates to peak connectivity $\langle \kappa | v \rangle$

P

Subtle interplay between clustering of saddles and zone of influence of peak.

Connectivity: evolution with cosmic time

Connectivity of a non-Gaussian field differ from the Gaussian

- In cosmological simulations, as density becomes more non-Gaussian, connectivity of the Cosmic Web decreases
- This leads to model dependent history of the connectivity at different redshifts.

Thursday, 11April, 19

Theory: evolution with cosmic time

Non-Gaussian 3D Extrema Counts (Gay et al, 2011)

scales like $D(z) \times a$ number

$$\langle n_{\mp --} \rangle = \frac{29\sqrt{15} \mp 18\sqrt{10}}{1800\pi^2 R_*^3} + \frac{5\sqrt{5}}{24\pi^2\sqrt{6\pi}R_*^3} \left(\left\langle q^2 J_1 \right\rangle - \frac{8}{21} \left\langle J_1^3 \right\rangle + \frac{10}{21} \left\langle J_1 J_2 \right\rangle \right)$$

Thursday, 11April, 19

Local multiplicity and bifurcation points

For galaxy formation, what matters most is how many filament connect **locally** onto a galaxy. At small enough scale, a peak is always **ellipsoidal** so that only two branches of filament stick out. Then those branches **bifurcate**. Some bifurcations appear so close to the peak that they are physically irrelevant. Hence we will define the **multiplicity** as the local number of filaments.

Local multiplicity and bifurcation points

For galaxy formation, what matters most is how many filament connect **locally** onto a galaxy. At small enough scale, a peak is always **ellipsoidal** so that only two branches of filament stick out. Then those branches **bifurcate**. Some bifurcations appear so close to the peak that they are physically irrelevant. Hence we will define the **multiplicity** as the local number of filaments.

Local multiplicity and bifurcation points

For galaxy formation, what matters most is how many filament connect **locally** onto a galaxy. At small enough scale, a peak is always **ellipsoidal** so that only two branches of filament stick out. Then those branches **bifurcate**. Some bifurcations appear so close to the peak that they are physically irrelevant. Hence we will define the **multiplicity** as the local number of filaments.

Local multiplicity

The denser the environment, the higher the multiplicity (e.g. bringing less coherent angular momentum and generating more ellipsoidal galaxies)

Let us count filament crossings at a sphere of radius R around the central peak...

Not all filaments are equally prominent. Counting important

- Number of dense $v_f > 2$ filamentary bridges is increasing with the height of the central peak
- Not very rare v = 3 central peak has two (branches of) dense filaments,
 i.e it sits in one dominant filament on average

 $\mathcal{A} \mathcal{A} \mathcal{A}$

• Rare v = 4 peak is at intersection of three prominent branches.

Typically, two to three dense filaments dominate and therefore define a plane of accretion... in agreement with numerical simulation (Danovich+12) and observations of plane of satellites around galaxies.

Application: preserving cosmic connectivity

On the connectivity of halos

Compute frequency of filament merger compared to halo merger in the vicinity of a halo merger event $\xi_{
m hf}(r)/\xi_{
m hh}(r)$.

Thursday, 11April, 19

Upshot

Connectivity is a packaging pb because of exclusion

- Connectivity = number of filament connected
 - ► κ= 4 in 2D κ = 6.11 in 3D (for GRF)
- Mutiplicity = number of *local* filament connected
 - μ~3 in 2D μ ~ 4 in 3D
- Both can be predicted from first principle
- Hence useful for cosmology & galaxy formation

hor

Upshot

- Set of critical events = useful topological compression of ICs
 - impacts 'dressed' mergers: ML on morphology?
 (i.e. cosmic evolution of peaks and their filaments and walls).

- Clustering of filament disappearance is consistent
 with *preserving connectivity* of peaks as they merge:
 - the rarer the peak the higher the rate of filaments merging.
- Rate of wall disappearance = dark energy probe,
 depend on the growth rate of structure and σ2/σ1σ3.

Conclusion

- Peak and constrained random field theories are paramount to understand the birth and growth of the cosmic web
- Many analytical results can be obtained in the weakly non-linear regime
- The topology and geometry of the cosmic web carries important cosmological information and is key for galaxy evolution.
- In particular, we now have a precise understanding of the connectivity of the cosmic web (the cosmic crystal) and its evolution through statistics of critical events.

IMHO of interest beyond cosmology

Application: impact of AGN feedback?

X-Ray detected groups

filaments from galaxy distribution

Elise Darragh-Ford Laigle, Gozaliasl, Pichon, Devriendt, Slyz et al.

+2*00

Galaxy distribution, gas density – Horizon-AGN simulation (Dubois+14)

Thursday, 11April, 19

Filament extraction in 2D around groups

Darragh-Ford, Laigle et al. in prep

Redshift and mass range constrained by galaxy photometric properties: We work in 0.5 < z < 1.2 with all galaxies more massive than 10^{10} solar mass

Filament extraction in 2D around groups

Darragh-Ford, Laigle et al. in prep

Redshift and mass range constrained by galaxy photometric properties: We work in 0.5 < z < 1.2 with all galaxies more massive than 10^{10} solar mass

Group Multiplicity Measuring connectivity with photometric filaments

 $150.44\,150.46\,150.48\,150.50\,150.52\,150.54\,150.56$

ID: 32

1.80

BGG: brightest group galaxy

Group Multiplicity in Horizon-AGN Testing the impact of photometric uncertainties

Group Multiplicity in Horizon-AGN Testing the impact of photometric uncertainties

Hydrodynamical simulation Horizon-AGN Dubois+14

Mock image

Virtually observed skeleton

Group Multiplicity Measuring connectivity with photometric filaments

Darragh-Ford, Laigle et al. in prep

photo-z uncertainties decrease connectivity

Group Multiplicity Impact of connectivity on group properties

Darragh-Ford, Laigle et al. in prep

The impact of Multiplicity on BGG properties Interpretation from Horizon-AGN simulation

Darragh-Ford, Laigle et al. in prep

Horizon-noAGN

Horizon-AGN

yperp (cMpc)

Group Multiplicity Impact of connectivity on group properties

Darragh-Ford, Laigle, et al in prep

HORIZON-AGN simulation result:

At a given halo mass, "AGN quenching efficiency" is higher at higher connectivity

- Connectivity: proxy for mass of accreted matter; more accretion higher feedback?
- higher connectivity accretion more isotropic

Group Multiplicity Impact of connectivity on group properties

Darragh-Ford, Laigle, et al in prep

HORIZON-AGN simulation result:

At a given halo mass, "AGN quenching efficiency" is higher at higher connectivity

- Connectivity: proxy for mass of accreted matter; more accretion higher feedback?
- higher connectivity accretion more isotropic

Connectivity: measuring DE?

Generalized geometrical Sn

Purpose: Express the invariant **cumulants** in terms of σ (hence D(z)) through Perturbation theory *e.g.* $\langle J_1 x \rangle = \text{function}(\sigma)$

$$F_{2}(\mathbf{k_{1}},\mathbf{k_{2}}) = \frac{5}{7} + \frac{\mathbf{k_{1}} \cdot \mathbf{k_{2}}}{k_{1}^{2}} + \frac{2}{7} \frac{(\mathbf{k_{1}} \cdot \mathbf{k_{2}})^{2}}{k_{1}^{2} k_{2}^{2}} \implies \mathcal{F}_{\alpha,\beta,\gamma}(\mathbf{k_{1}},\mathbf{k_{2}}) = F_{2}(\mathbf{k_{1}},\mathbf{k_{2}})\mathcal{G}_{\alpha,\beta,\gamma}(\mathbf{k_{1}},\mathbf{k_{2}})$$

$$GRAVITY$$

$$Geometric shape factor = powers of k$$

$$\boxed{\mathcal{O}_{=} \swarrow_{+} \Im_{+} \Im_{-} \Im_{+} \Im_{+} \Im_{+} \Im_{+} \Im_{+} \Im_{-} \Im_{+} \Im_{+} \Im_{+} \Im_{+} \Im_{+} \Im_{+} \Im$$

Generalized geometrical S_n

Purpose: Express the invariant **cumulants** in terms of σ (hence D(z)) through Perturbation theory *e.g.* $\langle J_1 x \rangle = \text{function}(\sigma)$

$$F_{2}(\mathbf{k_{1}}, \mathbf{k_{2}}) = \frac{5}{7} + \frac{\mathbf{k_{1}} \cdot \mathbf{k_{2}}}{k_{1}^{2}} + \frac{2}{7} \frac{(\mathbf{k_{1}} \cdot \mathbf{k_{2}})^{2}}{k_{1}^{2} k_{2}^{2}} \implies \mathcal{F}_{\alpha,\beta,\gamma}(\mathbf{k_{1}}, \mathbf{k_{2}}) = F_{2}(\mathbf{k_{1}}, \mathbf{k_{2}})\mathcal{G}_{\alpha,\beta,\gamma}(\mathbf{k_{1}}, \mathbf{k_{2}})$$
GRAVITY

Geometric shape factor= powers of k

power spectrum index

$$\frac{1}{\sigma} \langle x^{3} \rangle = 3 \, _{2}F_{1}\left(\frac{3+n}{2}, \frac{3+n}{2}, \frac{3}{2}, \frac{1}{4}\right) - \frac{1}{7}(8+7n) \, _{2}F_{1}\left(\frac{3+n}{2}, \frac{3+n}{2}, \frac{5}{2}, \frac{1}{4}\right).$$
skewness of field

Lokas 9

Generalized geometrical Sn

Purpose: Express the invariant **cumulants** in terms of σ (hence D(z)) through Perturbation theory *e.g.* $\langle J_1 x \rangle = \text{function}(\sigma)$

$$F_{2}(\mathbf{k}_{1}, \mathbf{k}_{2}) = \frac{5}{7} + \frac{\mathbf{k}_{1} \cdot \mathbf{k}_{2}}{k_{1}^{2}} + \frac{2}{7} \frac{(\mathbf{k}_{1} \cdot \mathbf{k}_{2})^{2}}{k_{1}^{2} k_{2}^{2}} \implies \mathcal{F}_{\alpha, \beta, \gamma}(\mathbf{k}_{1}, \mathbf{k}_{2}) = F_{2}(\mathbf{k}_{1}, \mathbf{k}_{2})\mathcal{G}_{\alpha, \beta, \gamma}(\mathbf{k}_{1}, \mathbf{k}_{2})$$
GRAVITY

Geometric shape factor= powers of k

power spectrum index
$$\frac{1}{\sigma} \langle x^{3} \rangle = 3 \, _{2}F_{1}\left(\frac{3+n}{2}, \frac{3+n}{2}, \frac{3}{2}, \frac{1}{4}\right) - \frac{1}{7}(8+7n) \, _{2}F_{1}\left(\frac{3+n}{2}, \frac{3+n}{2}, \frac{5}{2}, \frac{1}{4}\right).$$

skewness of field
$$\int_{\sigma} \langle xx_{1}^{2} \rangle = \frac{4(48+62n+21n^{2})}{21n^{2}} \, _{2}F_{1}\left(\frac{3+n}{2}, \frac{3+n}{2}, \frac{3}{2}, \frac{1}{4}\right) - \frac{6(3+n)(8+7n)}{21n^{2}} \, _{2}F_{1}\left(\frac{3+n}{2}, \frac{5+n}{2}, \frac{3}{2}, \frac{1}{4}\right)$$

apt field- gradient cumulant

n=-3 : $\frac{1}{\sigma} \langle x^{3} \rangle = \frac{34}{7} \implies \frac{1}{\sigma} \langle xx_{1}^{2} \rangle = \frac{34}{7} \frac{2}{32}$

15

Thursday, 11April, 19

Generalized geometrical Sn

Purpose: Express the invariant **cumulants** in terms of σ (hence D(z)) through Perturbation theory *e.g.* $\langle J_1 x \rangle = \text{function}(\sigma)$

$$F_{2}(\mathbf{k_{1}}, \mathbf{k_{2}}) = \frac{5}{7} + \frac{\mathbf{k_{1}} \cdot \mathbf{k_{2}}}{k_{1}^{2}} + \frac{2}{7} \frac{(\mathbf{k_{1}} \cdot \mathbf{k_{2}})^{2}}{k_{1}^{2} k_{2}^{2}} \implies \mathcal{F}_{\alpha,\beta,\gamma}(\mathbf{k_{1}}, \mathbf{k_{2}}) = F_{2}(\mathbf{k_{1}}, \mathbf{k_{2}})\mathcal{G}_{\alpha,\beta,\gamma}(\mathbf{k_{1}}, \mathbf{k_{2}})$$
GRAVITY

Geometric shape factor= powers of k

power spectrum index
$$\frac{1}{\sigma} \langle x^{3} \rangle = 3 \, _{2}F_{1}\left(\frac{3+n}{2}, \frac{3+n}{2}, \frac{3}{2}, \frac{1}{4}\right) - \frac{1}{7}(8+7n) \, _{2}F_{1}\left(\frac{3+n}{2}, \frac{3+n}{2}, \frac{5}{2}, \frac{1}{4}\right).$$

skewness of field

 $f(xx_{1}^{2}) = \frac{4(48+62n+21n^{2})}{21n^{2}} \, _{2}F_{1}\left(\frac{3+n}{2}, \frac{3+n}{2}, \frac{3}{2}, \frac{1}{4}\right) - \frac{6(3+n)(8+7n)}{21n^{2}} \, _{2}F_{1}\left(\frac{3+n}{2}, \frac{5+n}{2}, \frac{3}{2}, \frac{1}{4}\right)$

 $f(xx_{1}^{2}) = \frac{4(48+62n+21n^{2})}{21n^{2}} \, _{2}F_{1}\left(\frac{3+n}{2}, \frac{3+n}{2}, \frac{3}{2}, \frac{1}{4}\right) - \frac{6(3+n)(8+7n)}{21n^{2}} \, _{2}F_{1}\left(\frac{3+n}{2}, \frac{5+n}{2}, \frac{3}{2}, \frac{1}{4}\right)$

 $f(xx_{1}^{2}) = \frac{4(48+62n+21n^{2})}{21n^{2}} \, _{2}F_{1}\left(\frac{3+n}{2}, \frac{3+n}{2}, \frac{3}{2}, \frac{1}{4}\right) - \frac{6(3+n)(8+7n)}{21n^{2}} \, _{2}F_{1}\left(\frac{3+n}{2}, \frac{5+n}{2}, \frac{3}{2}, \frac{1}{4}\right)$

 $f(xx_{1}^{2}) = \frac{4(48+62n+21n^{2})}{21n^{2}} \, _{2}F_{1}\left(\frac{3+n}{2}, \frac{3+n}{2}, \frac{3}{2}, \frac{1}{4}\right) - \frac{6(3+n)(8+7n)}{21n^{2}} \, _{2}F_{1}\left(\frac{3+n}{2}, \frac{5+n}{2}, \frac{3}{2}, \frac{1}{4}\right)$

 $f(xx_{1}^{2}) = \frac{34}{7} \, \frac{2}{32}$

 $f(xx_{1}^{2}) = \frac{34}{7} \, \frac{2}{32}$

Thursday, 11April, 19

Generalized geometrical Sn

Purpose: Express the invariant **cumulants** in terms of σ (hence D(z)) through Perturbation theory *e.g.* $\langle J_1 x \rangle = \text{function}(\sigma)$

$$F_{2}(\mathbf{k}_{1},\mathbf{k}_{2}) = \frac{5}{7} + \frac{\mathbf{k}_{1} \cdot \mathbf{k}_{2}}{\mathbf{k}_{1}^{2}} + \begin{bmatrix} \frac{n_{s} = 0}{\text{prediction}} & \frac{n_{s} = 0}{\text{assurement}} \\ \frac{\sigma^{2}}{\sigma^{2}} & \frac{\sigma^{2}}{\sigma^{2}} & \frac{\sigma^{2}}{\sigma^{2}} & \frac{\sigma^{2}}{\sigma^{2}} \\ \frac{\sigma^{2}}{\sigma^{2}} & \frac{\sigma^{2}}{\sigma^{2}} & \frac{\sigma^{2}}{\sigma^{2}} & \frac{\sigma^{2}}{\sigma^{2}} \\ \frac{\sigma^{2}}{\sigma^{2}} & \frac{\sigma^{2}}{\sigma^{2}}$$

Monte and Monte Apple 19, 2011

Fiducial DE experiment

- Generate scale invariant ICs
- Evolve them with gravity
- identify critical sets
- compute differential counts
- estimate amplitude of NG distorsion via PT
- deduce geometric critical set σ

How is the cosmic web woven?

- Context
- Random fields, Peak theory, critical events
- Cosmic connectivity
- Cosmic multiplicity
- Application: AGN in groups

