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Motivation
• Future galaxy surveys, such as DESI and Euclid, will map the distribution 

of millions of galaxies to probe the evolution of dark energy and set 
constraints of models of modified gravity. 

• Dark energy can be studied by two main cosmological observables: 
measurements of the expansion rate of the universe (e.g. Sn Ia) and 
measurements of the growth rate of structure of the universe (e.g. RSD)
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Redshift space distortions:  
estimating the growth rate of structure 

Okumura et al. (2016)
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Fig. 17. Constraints on the growth rate f(z)σ8(z) as a function of redshift at 0 < z < 1.55. The constraint obtained from our FastSound sample at 1.19 <

z < 1.55 is plotted as the big red point. The previous results include the 6dFGS, 2dFGRS, SDSS main galaxies, SDSS LRG, BOSS LOWZ , WiggleZ, BOSS
CMASS, VVDS, and VIPERS surveys at z < 1. A theoretical prediction for fσ8 from ΛCDM and general relativity with the amplitude determined by minimizing
χ2 is shown as the red solid line. The data points used for the χ2 minimization are denoted as the filled-symbol points while those which are not used are
denoted as the open-symbol points. The predictions for fσ8 from modified gravity theories with the amplitude determined in the same way are shown as the
thin lines with different line types; f(R) gravity model (dot-short-dashed), the covariant Galileon model (dashed), the extended Galileon model (dotted), DGP
model (dot-dashed), and the early, time varying gravitational constant model (black solid).

modification of gravity manifests itself in the observations of
RSD. Provided that the stability condition 0 < Rf,RR/f,R ≤ 1

(where f,R=df/dR) is satisfied, the solution finally approaches
a de Sitter solution characterized by Rf,R = 2f (Amendola
et al. 2007). In this case the the effective gravitational coupling
in f(R) gravity is given by (Tsujikawa 2007; de Felice et al.
2011b)

Geff =
G0

f,R

1+4r/3
1+ r

, r =

(

k
amφ

)2

. (26)

where m2
φ ≃ f,R/(3f,RR) and we have that the f(R) model

(25) exhibits the gravitational interaction stronger than that in
the ΛCDM model at low redshifts.
As an example, we choose n=2 and λ= 2 and compute the

χ2 statistics by changing the normalization of fσ8 as we have
done for GR above. The resulting fσ8 as a function of z with the
best fitting amplitude at the scale k−1 = 30 h−1 Mpc is shown
as the dot-dashed line in figure 17. Because the f(R) gravity
model exhibits stronger gravity than GR, fitting the f(R)model
to the RSD measurements gives fσ8 smaller than the ΛCDM
model at higher redshift.

6.2.2 Dvali-Gabadadze-Porrati braneworld
An alternative model we consider is the Dvali-Gabadadze-
Porrati (DGP) braneworld (Dvali et al. 2000), in which a 3-
brane is embedded in a 5-dimensional (5D) Minkowski bulk
spacetime with an infinitely large extra dimension. In the ef-
fective 4-dimensional (4D) picture, the Friedmann equation on
the flat FLRW brane is given byH2− ϵH/rc = κ2

4ρm/3, where
ϵ = ±1 and rc = κ2

(5)/(2κ
2
(4)) is a length scale determined by

the ratio of 5D and 4D gravitational constants κ(5) and κ(4). For
the branch ϵ=+1, there is a de Sitter solution characterized by
the Hubble parameter HdS = 1/rc. We include this model be-
cause it realizes (as we shall see) Geff < G; unfortunately it
is associated with the existence of ghosts (Nicolis & Rattazzi
2004).
On the scale of surveys we have that the effective Newton’s

constant satisfies (Lue et al. 2004, Koyama & Maartens 2006):

Geff =

[

1+
1

3β(t)

]

G0 , β(t)≡1−2Hrc

(

1+
Ḣ
3H2

)

.(27)

SinceHrc≫1 and Ḣ/H2≃−3/2 in the deep matter era, it fol-
lows that |β|≫1 and henceGeff ≃G. As the background trajec-
tory approaches the de Sitter solution characterized byHrc = 1

and Ḣ = 0, we have that β = −1 and Geff = 2G/3. The DGP
model gives rise to weaker gravity due to the gravitational leak-
age to the extra dimension.
Since the DGP model predicts a weaker gravitational in-

teraction on cosmological scales, fitting the amplitude of
f(z)σ8(z) to RSD measurements without using the bound of
σ8(0) from CMB measurements gives rise to f(z)σ8(z) larger
than that of the ΛCDM model at high redshifts (z > 1). The
best-fit curve of the DGP model is plotted as the dot-long-
dashed line in Fig. 17, which exhibits a notable deviation from
the ΛCDM model and f(R) gravity at the redshift associated
with the FastSound measurement.

6.2.3 Galileons
Another class of models that modify gravity are based around a
scalar field, φ that satisfies a Galilean shift symmetry: ∂µφ →
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Figure 2. Constraints on the growth of density fluctuations in the Universe with errors projected from
a future survey designed with DESI specifications. The curves show the derivative of the logarithmic
growth with respect to the logarithmic scale factor — a quantity readily measured from the clustering
of galaxies in redshift space — as a function of redshift. We show theory predictions for the ⇤CDM model,
as well as for two modified-gravity models: the Dvali-Gabadadze-Porrati braneworld model [3] and the f(R)
modification to the Einstein action [4]. Because growth in the f(R) models is generically scale-dependent,
we show predictions at two wavenumbers, k = 0.02hMpc�1 and k = 0.1hMpc�1. LSST projects to impose
constraints of similar excellent quality on the growth function D(a).

GR because it can have the expansion history mimicking the ⇤CDM model (w is within 1% of �1) and
can have a growth function identical to ⇤’s at high redshift — can clearly be distinguished from ⇤CDM
using growth data from future surveys such as eBOSS, DESI, Euclid, or WFIRST. The DGP model can be
distinguished even more readily by measuring both the expansion history as well as growth of structure in
the Universe.

4 Dark Energy and Modified Gravity

Over the past decade, the ⇤CDM paradigm has passed all observational tests, firmly establishing it as our
cosmological “standard model”. However, it is clearly of crucial importance to test this paradigm, given
that it involves two unknown ingredients (dark matter and ⇤), and given the lack of theoretical motivation
for the value of the putative cosmological constant. Growth of structure o↵ers a broad range of probes of
dark energy which in principle cover three orders of magnitude in length scale, and one order of magnitude
in time or scale factor. In order to convincingly rule out alternatives to the cosmological constant, we need
to cover this range of scales and redshifts. Large-scale structure also provides model-independent tests of
gravity on Mpc scales and above, extending Solar System tests by ten orders of magnitude in length scale.

Community Planning Study: Snowmass 2013

Huterer et al. (2013)

DESI forecast
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Figure 1.16: Expected constraints on the growth rates in each redshift bin. For each z the central error
bars refer to the Reference case while those referring to the Optimistic and Pessimistic case
have been shifted by -0.015 and +0.015 respectively. The growth rates for different models
are also plotted: ΛCDM (green tight shortdashed curve), flat DGP (red longdashed curve)
and a model with coupling between dark energy and dark matter (purple, dot-dashed curve).
Here we plot again the f(R) model by Hu & Sawicki (2007) with n = 2 (blu shortdashed
curve) together with the model by Starobinsky (2007) (cyan solid curve) and the one by
Tsujikawa (2008) (black dotted curve). Also in this case it will be possible to distinguish
these models with next generation data.

yet the precision is good enough to distinguish the different models. For completeness, we
also computed the fully marginalized errors over the other Cosmological parameters for the
reference survey, given in Tab. 1.7.

As a second step we considered the case in which γ and w evolve with redshift according to
eqs. (1.216) and (1.213) and then we marginalized over the parameters γ1, w1 and Ωk. The
marginalized probability contours are shown in Fig. 1.18 in which we have shown the three
survey setups in three different panels to avoid overcrowding. Dashed contours refer to the
z-dependent parameterizations while red, continuous contours refer to the case of constant γ
and w obtained after marginalizing over Ωk. Allowing for time dependency increases the size
of the confidence ellipses since the Fisher matrix analysis now accounts for the additional
uncertainties in the extra-parameters γ1 and w1; marginalized error values are in columns
σγmarg,1 , σwmarg,1 of Tab. 1.8. The uncertainty ellipses are now larger and show that DGP
and fiducial models could be distinguished at > 2σ level only if the redshift survey parameter
will be more favorable than in the Reference case.

We have also projected the marginalized ellipses for the parameters γ0 and γ1 and calcu-
lated their marginalized errors and figures of merit, which are reported in Tab. 1.9. The
corresponding uncertainties contours are shown in the right panel of Fig. 1.17. Once again
we overplot the expected values in the f(R) and DGP scenarios to stress the fact that one
is expected to be able to distinguish among competing models, irrespective on the survey’s

Amendola et al. (2013)

Euclid forecast



f(R) gravity

Hu & Sawicki (2007)

Add a function of the Ricci scalar, f(R), to the Einstein-Hilbert Action: 
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1
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on meshes covering (parts of) the simulation box. There are two such codes known to us
to date: one is that of Oyaizu [15], which has been applied to f(R) gravity [16, 17] and the
DGP model [18]; the other is a modified MLAPM code [19] written by one of the authors [20]
and which has been applied to chameleon theories [21], f(R) gravity [22], coupled scalar field
theories [23, 24], scalar-tensor theory [25], dilaton model [26], symmetron model [27]. Both
have shortcomings: the Oyaizu’s code does not support adaptive refinements (thus easier
to implement) and high-resolution simulations are not practical; while the MLAPM code does
support adaptive refinements, it is not parallelised and not practical for simulations with very
big volumes and high mass resolutions. Furthermore, the equations on MLAPM refinements
are solved on a one-level grid, which is rather inefficient.

The aim of this paper is to introduce a new code ECOSMOG, which overcomes the short-
comings of the previous codes. The new code is based on RAMSES [28]. It is efficiently
parallelised, supports adaptive refinements and solves the equations using multigrid method
on the refinements (for a more detailed comparison of the three codes the readers can refer to
the table I). As a working example, we use the new code to run a number of test simulations
for the f(R) gravity, which is one of the most challenging models to simulate because of
the high nonlinearity of its equations. As will be shown below, the code works very well for
the f(R) model, and we certainly expect it to be straightforward to implement equations in
other models to our code.

The organisation of this paper is as follows. In section 2 we briefly introduce the f(R)
gravity model. In section 3 we introduce the supercomoving code unit using a different
form and list the N -body Poisson and f(R) equations to simplify the numerics. Section 4
then makes discrete versions of these equations to be implemented in our code. Section 5, we
show details on how the numerical implementation is performed and discuss several important
issues, which is the core section of this paper. Next, a long section, section 6, contains the
results of eleven tests of the code. These tests check the correctness, efficiency and consistency
of different aspects of the code and give us confidence about its reliability. Finally we compare
the present code with other mesh-based codes, summarise and conclude in section 7.

This is a paper to explain the code and physical interpretations of the results will be
presented in future publications.

2 A test case: the f(R) gravity

One can alter the Einstein gravity in such a way that it gives rise the cosmic acceleration
without introducing dark energy. One example along this line is the so-called f(R) gravity,
in which the Ricci scalar R in the Einstein-Hilbert action is generalised to a function of R
(see e.g., [13] for a review and references therein). In f(R) gravity, the structure formation
is governed by the following two equations,

∇2φ =
16πG

3
δρ−

1

6
δR(fR), (2.1)

∇2δfR =
1

3
[δR(fR)− 8πGδρ], (2.2)

where Φ denotes the gravitational potential, fR ≡ df(R)
dR is the extra scalar degree of freedom,

dubbed scalaron, δfR = fR(R) − fR(R̄), δR = R − R̄, δρ = ρ − ρ̄ is the matter overdensity,
and the quantities with overbar take the background values. The symbol ∇ is the three
dimensional gradient operator, and a is the scale factor. These two coupled Poisson-like

– 3 –

Modified Poisson Eq.

Constraint Eq.

Scalaron field:

fR ⌘ df(R)

dR
= �n

c1
c22

(�R/m2)(n+1)

[1 + (�R/m2)n]2
where

n = 1, |fR0 |  10�5 Solar system constraints

c1
c22

= � 1
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✓
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nDGP models
In this model, standard GR and the known matter fields are defined on a four-dimensional 
brane that is embedded in a five-dimensional bulk spacetime containing a five-dimensional 
generalisation of GR.
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output of a standard gravity simulation is rescaled in order to reproduce the result from a
di↵erent cosmology [39], which can be a modified gravity one. In ref. [38], is was shown that
the method can reproduce the power spectrum of the Hu-Sawicki f(R) model [40] with ⇠ 3%
accuracy, up to k ⇠ 0.1h/Mpc or k ⇠ 1h/Mpc (depending on the level of modelling involved,
see ref. [38] for the details).

In this paper, we propose another method to speed up current N-body simulations of
modified gravity, but whose accuracy extends further into the nonlinear regime compared
to previous e↵orts. Our method is based on the observation that it may be unnecessary to
spend a lot of computational time solving for the scalar field in highly screened regions, where
the fifth force is very weak. This is in the sense that it is possible to a↵ord an inaccurate
fifth force solution where the fifth force contribution to the total force is negligible. We
consider simulations of the Dvali-Gabadadze-Porrati [41] (DGP) gravity model to illustrate
the performance of our method, which we implement by truncating the iterations of the
scalar field on high refinement levels of the AMR mesh, where the fifth force is weaker due
to screening. One of our main results is that our method can result in an improvement of
a factor of ⇠ 10 in the performance of the simulations, with barely any loss in accuracy, at
least down to relatively small scales k ⇡ 5h/Mpc.

The outline of this paper is as follows. In section 2, we introduce the DGP gravity
model and the Vainshtein screening mechanism [42–45] that operates in it. In section 3,
we summarise the main features of state-of-the-art iterative methods for modified gravity
simulations and explain how our method can be used to speed them up. We also discuss
how the implementation of the speed-up method depends on the properties of the screening
mechanism at play. Section 4 is devoted to demonstrating the validity of our method by
comparing the results from the truncated and full simulations. We compare the simulation
results in their predictions for the dependence of the size fifth force on the AMR refinement
level in section 4.2; the matter power spectrum in section 4.3 and halo counts, concentration,
spin and profiles in section 4.4. In section 4.5, compare a number of properties of haloes
in the truncated runs to matched haloes in the full simulations. Finally, we summarize and
conclude in section 5.

Unless otherwise specified, we work with units where c = 1, where c is the speed of light.

2 The DGP gravity model

The braneworld DGP model [41] is amongst the most thoroughly studied modified gravity
models in the nonlinear regime with N-body simulations [18, 22, 23, 46–51] and it is perhaps
the leading representative of models that employ the Vainshtein screening mechanism. In
this model, standard GR and the known matter fields are defined on a four-dimensional
brane that is embedded in a five-dimensional bulk spacetime containing a five-dimensional
generalization of GR. The action of the model can be written as

S =

Z

brane
d4x

p
�g

✓
R

16⇡G

◆
+

Z
d5x
q

�g(5)

 
R(5)

16⇡G(5)

!
+ Sm(gµ⌫ , i), (2.1)

where g(5) and g are the determinants of the metric of the bulk (g(5)µ⌫ ) and brane (gµ⌫), re-
spectively, and R(5) and R are their Ricci scalars. The matter fields are denoted by  i and
their action Sm belongs to the four-dimensional part of the model. The ratio of the two grav-

– 3 –
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itational strengths, G(5) and G, is a parameter of the model known as the crossover scale, rc,

rc =
1

2

G(5)

G
. (2.2)

The expansion rate in this model can be writen as (e.g. [52, 53])

H(a) = H0

p
⌦m0a�3 + ⌦rc ±

p
⌦rc, (2.3)

where a is the cosmological scale factor, H0 = 100h km/s/Mpc is the present-day Hubble
expansion rate, ⌦m0 = ⇢̄m08⇡G/(3H2

0 ) is the present-day fractional matter density, ⇢̄m0 is the
present-day background value of the matter density, ⇢m, and ⌦rc = 1/(4H2

0r
2
c ) (the subscripts

0 denote present-day values). This model has two branches of solutions, characterized by the
sign of the second term on the right-hand side in eq. (2.3). The so-called self-accelerating
branch (sDGP) which corresponds to the (+) sign, is particularly appealing as it allows for
solutions in which the acceleration of the Universe arises without adding any explicit dark
energy component such as a cosmological constant or a smooth scalar field. However, this
branch is known to be plaged by ghost problems (unstable degrees of freedom without a
well defined minimum energy state) [54–56]. In addition to these theoretical instabilities, the
self-accelerating branch is in severe tension with CMB and supernovae data [57]. For these
reasons, most of the cosmological studies of DGP gravity have focused on the so-called normal
branch, nDGP, which is characterized by the (�) sign. This branch requires the addition of
an explicit dark energy component, ⇢de, on the brane. This gives rise to a term ⇢de(a) inside
the square root in the first term on the right-hand side of eq. (2.3), which can be tuned
so that the expansion rate in the nDGP model matches exactly that of ⇤CDM [23]. This
match is not mandatory, nor strictly required by observations, but it does help in comparing
the simulation results to ⇤CDM. This is in the sense that the changes in the observables
are then governed by the extra force (see below), and not by changes to the background
expansion rate. Naturally, the necessity of a dark energy component removes some of the
merit of the theory, but yields a self-consistent model that can (and has) prove very useful
in learning about modified gravity signatures on cosmological scales. From hereon, we focus
on the normal branch.

On scales much smaller than the horizon (⌧ c/H) and the crossover scale (⌧ rc), the
formation of structure in the nDGP model is governed by the modified Poisson equation,

r2 = 4⇡Ga2�⇢m +
1

2
r2', (2.4)

where �⇢m = ⇢m� ⇢̄m is the matter density perturbation and ' is a scalar degree of freedom
associated with the bending modes of the brane and whose equation of motion is given by

r2'+
r2c

3�(a)a2

h�
r2'

�2 � (rirj')
2
i
=

8⇡G

3�(a)
a2�⇢m.

(2.5)

The above equations correspond to a perturbed Friedmann-Robertson-Walker (FRW) metric
on the brane

ds2 = (1 + 2 ) dt2 � a(t)2 (1� 2�) �ijdx
idxj , (2.6)
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with

⌦rc =
1

4H2
0r

2
c

where

Expansion rate

Structure formation
6

On scales smaller than rc and in the quasi-static and weak-field limits, the equations for the Newtonian potential and the scalar
field ' originated from the bending of the brane is given by

r2

� = 4⇡Ga2�⇢m +

1

2

r2', (5)

r2' = � r2c
3�a2

h
(r2')2 � (rirj')

2

i
+

8⇡Ga2

3�
�⇢m, (6)

where

� = 1 + 2Hrc

 
1 +

˙H

3H2

!
. (7)

Note that we assumed the normal branch of the DGP model. This branch requires dark energy to explain the accelerated
expansion of the Universe. In order to make the comparison between ⇤CDM and f(R) models easier, we tune the dark energy
equation of state so that the background expansion history is identical with that of ⇤CDM [62].

In the DGP model, massive particles also feel a fifth force – as can be seen from Eq. (5) – whose potential is governed by the
scalar field '. The model realizes the so-called Vainshtein screening mechanism [18], by which the fifth force can be suppressed
in regions where the second derivatives of the scalar field ' (r2') is large. This can be seen from Eq. (6): in regions where r2'
is small, nonlinear terms such as (r2')2 and (rirj')

2 are subdominant so that r2' ⇠ r2

� for � ⇠ O(1); while in regions
where r2' is large, the nonlinear terms are dominant and so r2' ⌧ r2

�.
Unlike f(R) gravity, in the DGP model the linear growth rate is scale-independent as the scalar field is massless. Detailed

comparisons between nDGP and f(R) gravity, in particular Vainshtein and chameleon screening mechanisms can be found in
[63, 64]

B. Systematics

As noted earlier, the primary goal of this paper is to quantify how well our classes of estimators can constrain modified gravity
theories. The first stage of any such effort would focus on comparing the differences between predictions from GR against the
modified gravity models at statistical levels defined by the theory. In this case, we would focus on using the three dimensional
information in position and velocity space as needed for our estimators. We can quantify the size (number and volume) of a
survey required for a signal to exist above the noise, as defined by stochastic fluctuations created by generating multiple galaxy
catalogs under idealized conditions and using identical initial conditions.

However, any real detection in the DESI data of MG would likely be limited by systematic errors. To address these, one needs
a pipeline that produces multiple mocks on a light-cone that incorporates the DESI survey geometry. On top of this geometry
we would have the survey masks which incorporate information about the observing conditions, such as targeting (e.g., galaxy
magnitude, color, surface brightness), fiber placement, galactic extinction, atmospheric extinction, seeing, cloud-cover, zodiacal
light, and so on. Mitigation strategies for these observational systematics, including a forward modelling approach and weighting
methods, will be developed by the DESI clustering working group and are in detail discussed in an companion paper. We do
not expect the measurement and observational effects, such as extinction or seeing, to particularly affect small scales but to be
mainly important for large to intermediate scales. Since in this paper we focus on constraining MG primarily from small scales
we will not address the details of accounting for these systematics here.

On the other hand, missing galaxies due to fiber collisions, i.e. the finite size of the fibers preventing the placement of fibers
close to each other within the focal plane, while in general affecting all scales lead to a factor of two discrepancy in the 2-
point clustering on small scales if not accounted for properly. One way to account for this effect is to introduce a propablility
based weighting scheme using the target alogrithm itself [65]. While this method was developed within the framework of 2-
point statistics, in principle it can be applied to other estimators as well. Nonetheless, it is necessary to test for potential bias
and efficiency when the method is applied to other statistics. Alternatively, one can approach the problem by including fiber
collisions in the galaxy mock catalogs to closely resemble the sky as observed through DESI and its required ancillary surveys
(e.g., DECals). However, this approach relies on the correct modelling of the small scale clustering to precisely match to the
data. Uncertainty in the modelling of the small scale clustering will therefore translate into uncertainty on the fiber collisions
and potentially couple small and large scales as a result. In this paper, we leave the treatment of fiber collisions for future work.

With a few exceptions, this paper focuses on the first stage of using somewhat simplistic mock galaxy samples to place initial
limits on the differences we might see between GR and modified gravity using a range of probes. In doing so, we hope to better
understand the requirements needed on more realistic mock sky catalogs, later to be used to make predictions and observed
constraints on modified gravity signatures.

where

6
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catalogs under idealized conditions and using identical initial conditions.

However, any real detection in the DESI data of MG would likely be limited by systematic errors. To address these, one needs
a pipeline that produces multiple mocks on a light-cone that incorporates the DESI survey geometry. On top of this geometry
we would have the survey masks which incorporate information about the observing conditions, such as targeting (e.g., galaxy
magnitude, color, surface brightness), fiber placement, galactic extinction, atmospheric extinction, seeing, cloud-cover, zodiacal
light, and so on. Mitigation strategies for these observational systematics, including a forward modelling approach and weighting
methods, will be developed by the DESI clustering working group and are in detail discussed in an companion paper. We do
not expect the measurement and observational effects, such as extinction or seeing, to particularly affect small scales but to be
mainly important for large to intermediate scales. Since in this paper we focus on constraining MG primarily from small scales
we will not address the details of accounting for these systematics here.

On the other hand, missing galaxies due to fiber collisions, i.e. the finite size of the fibers preventing the placement of fibers
close to each other within the focal plane, while in general affecting all scales lead to a factor of two discrepancy in the 2-
point clustering on small scales if not accounted for properly. One way to account for this effect is to introduce a propablility
based weighting scheme using the target alogrithm itself [65]. While this method was developed within the framework of 2-
point statistics, in principle it can be applied to other estimators as well. Nonetheless, it is necessary to test for potential bias
and efficiency when the method is applied to other statistics. Alternatively, one can approach the problem by including fiber
collisions in the galaxy mock catalogs to closely resemble the sky as observed through DESI and its required ancillary surveys
(e.g., DECals). However, this approach relies on the correct modelling of the small scale clustering to precisely match to the
data. Uncertainty in the modelling of the small scale clustering will therefore translate into uncertainty on the fiber collisions
and potentially couple small and large scales as a result. In this paper, we leave the treatment of fiber collisions for future work.

With a few exceptions, this paper focuses on the first stage of using somewhat simplistic mock galaxy samples to place initial
limits on the differences we might see between GR and modified gravity using a range of probes. In doing so, we hope to better
understand the requirements needed on more realistic mock sky catalogs, later to be used to make predictions and observed
constraints on modified gravity signatures.

H(a) = H0

p
⌦m0a�3 + ⌦DE(a) + ⌦rc �

p
⌦rc
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The linear growth for the matter fluctuations in the gravity models can be obtained by 
solving the equation of the linear growth factor, D
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We define the linear growth rate, f, as

f ⌘ d lnD

d ln a
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ELEPHANT (Extended LEnsing PHysics with 
ANalytical ray Tracing) Simulations
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parameter physical meaning value
⌦

m

present fractional matter density 0.281
⌦

⇤

1� ⌦

m

0.719
h H

0

/(100 km s�1Mpc�1

) 0.697
n
s

primordial power spectral index 0.971
�
8

r.m.s. linear density fluctuation 0.820
|f

R0

| Hu & Sawicki f(R) parameter 0 (GR) 10�6 (F6), 10�5 (F5), 10�4 (F4)
H

0

r
c

nDGP parameter 5.0 (N5), 1.0 (N1)
L

box

simulation box size 1024 h�1Mpc
N

p

simulation particle number 1024

3

m
p

simulation particle mass 7.78⇥ 10

10h�1M�
N

dc

domain grid cell number 1024

3

N
ref

refinement criterion 8

TABLE I. The parameters and technical specifications of the N-body simulations of this work. Note that the refinement criterion N
ref

is the
same for refinement levels, and that �

8

is for the ⇤CDM model and only used to generate the initial conditions – its value for f(R) gravity is
different but is irrelevant here.

C. N-body simulations and halo/galaxy catalogs

In this subsection we describe our simulations and present some basics statistics obtained from the simulated dark matter halo
and mock galaxy catalogs.

1. N-body simulations

The f(R) simulations used in this work were performed using the ECOSMOG code [28], which was optimized in [40] using
a new scheme to speed up the convergence rate. The nDGP simulations were carried out using the ECOSMOG-V code [30],
which was optimized in [39] using an approximation scheme which was demonstrated to be sufficiently accurate. Both codes
are extensions to the publicly-available N -body and hydrodynamical simulation code RAMSES [66], with new routines added to
solve the scalar field and modified Einstein equations in f(R) and nDGP models. The code is parallelized efficiently using MPI
and uses the adaptive-mesh-refinement (AMR) technical to achieve high resolution in overdense regions where the requirement
for the force resolution is high and the screening effect is strong. The simulations start with a uniform domain grid with N

1/3
dc

cells a side which covers a cubic box of size L
box

. The cells are refined (split into eight daughter cells) if the number of particles
contained in them grows over some pre-set threshold (N

ref

), in such a way as to hierarchically refine the domain grid to add
higher-resolution meshes. The rest of the simulation is the same as in simulations for standard gravity, and interested readers are
referred to Ref. [66] for more details.

The cosmological and technical parameters are given in Table I, and the former are chosen as the best-fitting [67] ⇤CDM
parameters of the WMAP9 cosmology. The simulations were started at z

ini

= 49, from initial conditions generated using
Zel’dovich approximation with the publicly available MPGRAFIC code [68]. Since the f(R) and nDGP model parameters are
chosen such that they only deviate from ⇤CDM non-negligibly at late times, at z

ini

the modified gravity effect can be neglected,
and so all our simulations started from exactly the same initial condition. In order to estimate the effect of sample variance, we
have used five independent realizations of boxes whose initial conditions differ only in their random phases of the density field.
We shall refer to these different realizations as Box 1 to Box 5.

As a quick check of the simulations, and to gain an insight into the qualitative behaviors of the different models. Figure 1
shows the matter power spectra of the models at two redshifts, z = 0 (left) and z = 0.5 (right), as well as their relative difference
with respect to ⇤CDM (bottom subpanels). For z = 0, we show the results for Box 1 only, while for z = 0.5 we show the results
for all boxes (average in the top subpanel and individual realizations in the bottom subpanel). Figure 1 also sets the line style
and color scheme that will be used in other plots of this paper (see the legend and caption for more details).

Figure 1 shows explicitly that, as mentioned above, in f(R) gravity the linear growth rate is scale dependent while in nDGP
it is scale independent, as can be clearly seen from the bottom subpanels at k . 0.1hMpc

�1. Among the f(R) variants, F4 (F6)
Alexie: What is F6? I don’t think this has been defined yet. shows strongest (weakest) deviation from GR, while for the nDGP
models N5 deviates more from GR; in both models the difference from GR increases in time as the effect of enhanced gravity
accumulates.

An interesting observation is that for both F4 and N1 the deviation from GR starts to decrease at k ⇠ 0.08hMpc

�1. For F4
this has been occasionally (incorrectly) identified as a signature of chameleon screening, while indeed it is related to the internal
structures of halos [19] – this can be best realized from the facts that F5 and F6, which have stronger screening effect, actually

(Cautun et al. 2017, Hernández-Aguayo et al. 2018)

We use the outputs at z=0, 0.3 and 0.5



Halo occupation distributionHOD Model

The halo occupation statistics treats centrals 
and satellite galaxies separately. 

Central galaxy

Satellite galaxies

Central Galaxies are in the centres of their  
host dark matter halo. The average number 
of galaxies with stellar mass larger than M* 
that resides in a halo of mass Mvir is 
denoted by:

Satellite Galaxies are orbiting inside a 
larger host halos. The average number of 
galaxies with stellar mass larger than M* 
that resides in a halo of mass Mvir is 
denoted by:

*Here I’m using M* but in principle we can use any other 
galaxy property: e.g., luminosity.

We assign a number of galaxies (central and satellites) to each halo

Centrals are in the centre of their host 
dark matter halo. The average number of 
centrals that resides in a halo of mass M 
is denoted by: 

Satellites are orbiting inside a larger 
host halos. The average number of 
satellites that resides in a halo of mass M 
is denoted by: 

440 M. Manera et al.

In our sample, for a random chosen galaxy, the typical correction
of its host halo is about 30 per cent of the mass, and the largest
corrections are of order 50 per cent.

3.3 Galaxies

We assign galaxies to haloes by means of an HOD (Peacock &
Smith 2000; Scoccimarro et al. 2001; Berlind & Weinberg 2002)
functional form with five parameters, as used by Zheng et al. (2007).
The mean number of galaxies in a halo of mass M is the sum of the
mean number of central galaxies plus the mean number of satellite
galaxies, ⟨N(M)⟩ = ⟨Ncen(M)⟩ + ⟨Nsat(M)⟩, where

⟨Ncen⟩ = 1
2

[
1 + erf

(
logM − logMcut

σlogM

)]
,

⟨Nsat⟩ = ⟨Ncen⟩
(

M − M0

M1

)α

, (4)

and ⟨Nsat⟩ = 0 if the halo mass has M < M0. In this parametrization
Mcut and M1 are the typical halo masses for having, respectively,
order of one central and one satellite galaxy.4 The HOD parameters
are calibrated to fit the observational data (see Section 4). Galaxies
in haloes are given the velocity of the halo, i.e. the velocity of the
centre of mass of the particles in the halo, plus a dispersion velocity
from a Gaussian distribution with an amplitude given by the mass
of the halo and the virial theorem. Galaxies that are below our
lower halo mass limit of 5 × 1012 M⊙ h−1 (7 per cent of the total)
are assigned randomly to dark matter particles that do not belong
to haloes. This is different from the CMASS mocks in Manera
et al. (2013) where we randomly assigned these galaxies to any
dark matter particle. More importantly, we have allowed the HOD
to depend on the number density of galaxies, and fitted the HOD
simultaneously with the number density as a function of redshift,
therefore, we have not subsampled the galaxy field a posteriori to
match the LOWZ distribution. The details of the fitting procedure
are explained in Section 4.

3.4 Mask: geometry

BOSS covers regions of the sky in the two Galactic hemispheres.
Fig. 1 shows the NGC and the SGC observed footprints for the
LOWZ Data Release 10 and 11 (DR10, DR11), the latter more than
double the areas observed by BOSS in DR9.

As with the data, the footprints of the mock galaxy catalogues
exclude vetoed regions, which amounts to about 5 per cent of the
total area covered. These regions are generally small and have been
removed for a variety of reasons including regions with bad photom-
etry, failure of the point spread function (PSF) modelling, timing
out errors in the pipeline reduction, or regions around bright stars,
or around objects that have been highly prioritized, since a galaxy
cannot be observed within the fibre collision radius of these points.
For more detailed information of the veto mask see Anderson et al.
(2012) and SDSS DR10 documentation.

In Table 1 we show the areas of the NGC and SGC of the LOWZ
DR10 and DR11 mock galaxy catalogues. There are small differ-
ences (less than 0.5 per cent) between the areas of the mocks and
of the data, which result because of ‘last minute’ changes to the
data mask used. The effect of these differences is insignificant. The
effective area is the area used weighted by the target completeness.

4 In this paper log always stands for base-10 logarithm.

Table 1. Areas of the LOWZ sample
mock galaxy catalogues for the NGC
and SGC.

LOWZ DR10 NGC SGC

Total area/deg2 4222 1429
Veto area/deg2 251 58
Used area/deg2 3971 1371
Effective area/deg2 3840 1331

LOWZ DR11 NGC SGC

Total area/deg2 5787 2204
Veto area/deg2 335 89
Used area/deg2 5452 2115
Effective area/deg2 5287 2060

Figure 2. Footprints of the LOWZ DR10 NGC (blue, bigger areas) and SGC
(green, smaller areas) mock galaxy catalogues. Two of each can fit without
overlap in the celestial sphere. The same is true for the DR11 footprints.

Regarding the geometry of the LOWZ sample, it is worth noticing
that it is possible to fit two samples of the NGC and SGC footprints
in the celestial sphere without overlap. We have taken advantage
of that when creating our mock galaxy catalogues. In this way we
only needed 500 matters field to generate 1000 mocks. In order to
get two footprints within the same matter run, we convert the right
ascension, RA, and declination, Dec., to Cartesian coordinates and
then rotate about the y-axes. Fig. 2 shows two NGG and two SGC
footprints. The second footprints of the NGC and SGC are obtained
by rotating the previous ones, respectively, with α = −120◦ and
−55◦. Since there is no overlap between the footprints and the
number of pairs at the scales of interest between different foot-
prints is negligible, thus each mock can be taken as an independent
realization.

3.5 Mask: completeness

The mocks have been created taking into account the completeness
of the sample observed at every sector in the sky, as measured
from the data. We do not reposition plates for each mock as if we
were performing actual observations. The mock galaxies have been
subsampled to mimic variations in the target completeness, redshift
failures, and close pair completeness. Close pair completeness refers
to the case where a spectroscopic redshift of a galaxy is not available
due to the fact that is within 62 arcsec of another galaxy, meaning
that two fibres cannot be placed on both galaxies simultaneously.
The effective areas of the mocks, that result from weighting by
a measure of target completeness, CBOSS, as defined in Anderson
et al. (2012) are shown in Table 1. For detailed numbers of galaxies,
missed targets, and areas of the LOWZ galaxy sample see Tojeiro
et al. (2014).

MNRAS 447, 437–445 (2015)
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Figure 5. Marked correlation functions of haloes and CMASS galaxies at z = 0.5; mark in function of the Newtonian gravitational potential. Left-hand side
panel shows the functional form of the Gaussian-�

N

mark (32); the values of the parameters �⇤ and �� are shown in the legend. Middle and right-hand
side plots show the marked correlation function using the mark given by Eqn. (32) for haloes and galaxies, respectively. All lower subpanels for middle and
right-hand side plots show the relative difference between f (R) models and GR. The plotted values correspond to the average over the 5 realisations. Errors
correspond to 1� standard deviation over the 5 GR realisations.

It is evident that by using Eqn. (26) one can control the up-
weighting by varying the power p and the parameter ⇢⇤. For sim-
plicity we chose p = 1 and ⇢⇤ = 10

�6. With the log-mark, a natural
choice of the parameter which controls the enhancement is ⇢⇤ = 1,
given m = 0 for voids (⇢R = 0). The parameters we chose for
the Gaussian-⇢R mark are: ⇢⇤ = 1.5 and �⇢R = 0.2, which en-
sures that we up-weight intermediate-density regions of interest.
The functional form of the marks, Eqs. (26) – (28), is shown in the
left-hand panels of Fig. 4. We refer to low-, intermediate- and high-
density regions as those for which the cells contain N = 1, 2�3 and
> 4 objects or, equivalently, to cells with ⇢R = 0.62, 1.25 � 1.88

and > 2.51, respectively (see Eqn. (29)).
Fig. 4 shows the marked correlation functions (mCFs) at

z = 0.5 measured from the halo (middle panels) and the HOD
(left panels) catalogues in the f (R) and GR models. In all cases
the marked correlation function goes to unity on large scales as ex-
pected (see right-hand expression of Eqn. (25)). The first row of
plots in Fig. 4 shows the mCF using the mark defined by Eqn. (26),
the White-mark, with p = 1 and ⇢⇤ = 10

�6, the second row shows
the log-mark, Eqn. (27) with ⇢⇤ = 1, and the third row shows the
Gaussian-⇢R mark with ⇢⇤ = 1.5 and �⇢R = 0.2. We observe dif-
ferent behaviours: for the White-mark, Eqn. (26), the marked cor-
relation function is M(r)  1 at small separations, for the log mark,
Eqn. (27), we have M(r) � 1, while for the Gaussian-⇢R we notice
a transition from M(r)  1 to M(r) > 1 at intermediate scales.

Analysing the behaviour of the halo marked correlation func-
tions (see middle panel of Fig. 4) we find the following features:

• The clustering of F6 is almost indistinguishable from that of
GR for all three marks, because of the efficient screening.

• For F5, the stronger growth (see Sec. 4.3) means more cluster-
ing of haloes on small scales, which is why W(r) and therefore the
marked correlation function is more affected at smaller r .

• In the case of F4, the higher production rate of massive haloes,
driven by the more frequent mergers of lower mass haloes (see
Sec. 4.3), leads to the incorporation of haloes into the fixed number
density sample which correspond to low density peaks and which
are more likely to come from low-density regions. Hence, the prob-

ability of finding a pair of tracers (haloes or galaxies) increases at
intermediate separation r due to presence of these low mass haloes.

The right columns of Fig. 4 show that galaxies qualitatively
mimic the marked clustering of haloes (at least for the White and
log marks). Hence, the behaviour of the galaxy marked correla-
tion functions can be understood following the same explanation as
presented above for haloes. It is interesting to notice that even with
the added complexity of populating haloes with HOD galaxies, the
qualitative behaviour of the marked correlation functions preserves,
suggesting that a true physical feature is being observed here.

For the Gaussian�⇢R mark, Eqn. (28), which enhances
intermediate-density regions (cells with 2 or 3 haloes/galaxies),
we found that the F4 galaxy marked correlation function reaches
a maximum of 20% for the lowest separation bin, while F6 predicts
a difference of 5% and F5 keeps closer to GR with a difference of
⇠ 3%.

4.4.2 Gravitational potential

Our second definition of environment is based on the Newtonian
gravitational potential produced by dark matter haloes. The dark
matter haloes in our simulations are reasonably well described by
a NFW density profile (Navarro et al. 1996, 1997):

⇢NFW =
⇢

s

(r/r
s

)(1 + r/r
s

)2
, (30)

where r
s

is the characteristic radius where the profile has a slope
of �2 and ⇢

s

is the density at this radius. The Newtonian grav-
itational potential is obtained by solving the Poisson equation,
r�

N

= 4⇡G⇢NFW, for the NFW density profile Eqn. (30) (Cole
& Lacey 1996; Navarro, Frenk & White 1997; Lokas & Mamon
2001):

�
N

= �GM
200c

r
200c

ln(1 + c)
ln(1 + c) � c/(1 + c) , (31)

where G is Newton’s gravitational constant, M
200c was defined

in Eqn. (16) and c is the concentration parameter defined as c ⌘
r
200c/r

s

. Previous studies have used the Newtonian gravitational
potential in modified gravity to characterise local variations in the
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ABSTRACT
We present a fast method of producing mock galaxy catalogues that can be used to
compute covariance matrices of large-scale clustering measurements and test the meth-
ods of analysis. Our method populates a 2nd-order Lagrangian Perturbation Theory
(2LPT) matter field, where we calibrate masses of dark matter halos by detailed com-
parisons with N-body simulations. We demonstrate the clustering of halos is recovered
at ⇠10 per cent accuracy. We populate halos with mock galaxies using a Halo Occu-
pation Distribution (HOD) prescription, which has been calibrated to reproduce the
clustering measurements on scales between 30 and 80 h�1 Mpc. We compare the sam-
ple covariance matrix from our mocks with analytic estimates, and discuss di↵erences.
We have used this method to make catalogues corresponding to Data Release 9 of
the Baryon Oscillation Spectroscopic Survey (BOSS), producing 600 mock catalogues
of the “CMASS” galaxy sample. These mocks enabled detailed tests of methods and
errors that formed an integral part of companion analyses of these galaxy data.

Key words: cosmology: large-scale structure of Universe, galaxies: haloes, statistics

1 INTRODUCTION

Galaxy surveys such as the the Baryon Oscillation Spectro-
scopic Survey (BOSS, Schlegel et al. 2009a; Eisenstein et al.

? email:marc.manera@port.ac.uk

2011), WiggleZ (Drinkwater et al. 2010), HETDEX Hill et
al. (2004), and the Dark Energy Survey †, designed to cover
large areas of the sky, are currently leading the e↵ort to con-
strain cosmological parameters using the observed clustering

† http://www.darkenergysurvey.org
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40 steps the resulting best-fit HOD was

log(M
min

) = 13.09

log(M1) = 14.00

log(M0) = 13.077

�logM = 0.596

↵ = 1.0127. (26)

We find �2 = 5.89 with 9 degrees of freedom. In Figure 10
we show in black the mean number of galaxies as a function
of halo mass for our best fit. In red we show the best-fit
model of White et al. (2011). Both agree to within the 1-
sigma errors, and the mean number of galaxies at a given
mass, N(M), agrees better than 10 per cent for halos below
1014.5M�/h and better than 20 per cent between 1014.5 and
1015M�/h.

The shadowed area in the plot denotes the masses for
which we have no halos in the simulation. The galaxies cor-
responding to those halos have been assigned positions and
velocities of randomly selected dark matter particles. They
form⇠ 25 per cent of the total of mock galaxies. If we did not
include them then we would not have recovered a sensible
HOD because we would have had to populate the available
low mass PThalos with far too many galaxies in order to
reduce the bias.

It is possible to set the HOD parameters of the mocks
more accurately by fitting both the two and the three point
correlation functions, as the latter helps to break degenera-
cies between the parameters (Sefusatti & Scoccimarro 2005;
Kulkarni et al. 2007). However, computing the three point
function in each step of the fitting process is computation-
ally very time consuming. We leave this improvement as a
possibility for future versions of the mocks.

8.2 Geometry and mask

We wish to create mocks with a geometry appropriate for
the BOSS CMASS DR9 galaxy sample, including both the
Northern and Southern Galactic caps, with redshifts be-
tween 0.43 and 0.7. These are the data used in a number of
recent cosmological analyses (Anderson et al. 2012, Sanchez
et al. 2012; Samushia et al. 2012; Reid et al. 2012; Nuza et al
2012; Tojeiro et al. 2012a,b; Ross et al. 2012). In this section
we show how we match the DR9 CMASS geometry.

The Northern and Southern Galactic cap regions can
either be fitted into a reshaped box with size L = 2.4Gpc/h,
which is the size we adopt for our PTHalos runs. The re-
shaping is achieved as follows. Starting with a cubical box
of size L, we cut the xy-plane as indicated in the top panel of
Figure 11. Using the periodicity of the PTHalos simulation
we can copy or move the particles from outside the range
L/2 < x + y < 3L/2 into that same range. Thus, as shown
in the second panel from the top of Figure 11, we can obtain
a rectangular box of size L/

p
2, 2L/

p
2,L. The last dimen-

sion is defined as the z-direction. This technique is similar
to volume remapping of Carlson and White (2010).

With this geometry, placing our observer at (x, y, z) =
(L/4,L/4, 0) we can cover a quarter of the sky up to a dis-
tance of L/

p
2 from the observer without repetition of the

underlying matter distribution. This is shown in the third
panel from the top of Figure 11. For the WMAP cosmolog-
ical model this distance is equivalent to reaching a redshift

z = 0.663. Notice, however, that the constraint of a max-
imum distance of L/

p
2 is set only because of the geome-

try of the z = 0 plane. Keeping the observer in the same
place, but looking into a direction o↵ the plane, we could
go to a higher distance without hitting repeated volumes.
Translating to consider an angular region, the above max-
imum distance is only valid if we require a full 180-degree
wide view and, for example, for an opening of 126.87 degrees
centered on the direction ê = (x̂+ ŷ)/

p
2 would allow us to

reach a distance of
p

5/8L without repetition. It is clear that
the actual maximum distance achievable with any given box
without repetition will depend on the angular mask of the
survey being analysed.

To generate the mocks for DR9 CMASS, we first pro-
duce a redshift shell such as that shown in the bottom panel
of Figure 11. We then rotate the 3D coordinates to fit either
the NGC or SGC angular footprint into the box contain-
ing the redshift shell. Images of these angular footprints are
shown in Figure 1. The extent of these masks means that
our boxes are of su�cient size that mock catalogues contain-
ing galaxies with redshifts z < 0.7 do not su↵er from any
repetition of the underlying density field.

In order to mimic the observations as closely as possible,
we use the MANGLE software (Swanson et al. 2008) to dif-
ferentiate between sectors that have di↵erent observational
properties, as described in Ross et al. (2012). The complete-
ness in the mock galaxies is defined slightly di↵erently from
that of the CMASS DR9 catalogues. As we are only inter-
ested in large-scales, we do not mimic the full small-scale
BOSS targeting procedure in the mocks. In particular, we
ignore the e↵ect of missing close-pairs of galaxies that re-
sult from the fact that we cannot observe two targets closer
than 62” with the same plate; this is a physical limitation
imposed by the size of the fibres. We also ignore the e↵ect of
plate-scale angular variations in our redshift success rate. In
Section 3 of Anderson et al. (2012) two completeness mea-
sures are defined: the fraction of objects targeted that are
observed or are in a close-pair, CBOSS, and the fraction of
galaxies with good redshifts, Cred. For the mocks, we revise
the definition of sector completeness such the angular varia-
tions in galaxy density follow those in the sample with good
redshifts, ignoring close-pairs. We therefore define

Cmock =
Nobs

Ntarg �Nknown
, (27)

where Nobs is the number of objects observed spectroscopi-
cally by BOSS in any sector, Ntarg is the number of target
objects, and Nknown is the number that already have good-
quality known redshifts. Following Anderson et al. (2012),
the redshift completeness is defined as

Cred =
Ngal

Nobs �Nstar
, (28)

where Ngal is the number of targets within a sector, observed
by BOSS and subsequently spectroscopically classified as
galaxies with good redshifts, and Nstar is the number classi-
fied as stars. We subsample galaxies in our mock catalogues
based on the product Cmock ⇥Cred. i.e. we subsample based
on angular fluctuations of galaxies with good redshifts, ig-
noring other subtleties. The implemented angular mask can
be seen in Figure 1.

As we are only interested in matching the large-scale
clustering signal we do not include small-scale holes in the

c� 0000 RAS, MNRAS 000, 000–000

We ‘tuned’ the HOD parameters such that the galaxy number densities and the real-
space galaxy two-point correlation functions in the modified gravity models match those 
in GR to within 1 ∼ 2%. 

BOSS CMASS sample
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observer is surrounded by concentric walls of galaxies: the
bull’s-eye effect.

It is not implausible that the bull’s-eye effect may be
responsible for the visual impact of wall-like features concen-
tric about our position, such as the Great Wall of galaxies. We
would not argue that there is no physical structure underlying

these features, but that existing structure may be enhanced by
a simultaneous smearing and compressing distortion as in the
simulation.

We note that a full view of the simulation in redshift space
shows multiple rings, separated by fairly uniform intervals. A
corresponding prediction is that as the magnitude limit of
magnitude-complete redshift surveys is increased, other sets of
walls concentric about our position but at larger distances
should become apparent. Indeed, the map produced by the
Las Campanas survey (Landy et al. 1996) is similar in appear-
ance to Figure 2a above. We also suggest a possible relation-
ship to other findings based on “core sampling” (Broadhurst et
al. 1990; Doroshkevich et al. 1996; Cohen et al. 1996).

It is possible that the bull’s-eye effect is giving a misleading
impression about the nature of the large-scale structure of the
universe. The distribution of galaxy clusters and filaments may
be more uniform than impressions from redshift-space maps
imply.

We wish to emphasize that our simulation demonstrates the
effect only qualitatively. A detailed comparison with observa-
tional data demands the use of a three-dimensional simulation
with a power spectrum more closely matched to that observed
in the local universe. The spacing and intensity of this effect
will depend on details of the power spectrum and mass density
of the universe. In fact, characteristic ring spacing combined
with the measured angular power spectrum should measure
bulk flows and provide information on V0. Future work should
include examination of the effect with a variety of three-
dimensional spectra and background cosmologies.
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to acknowledge financial support from NASA grant NAGW
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L18 PRATON, MELOTT, & MCKEE

Praton et al (1997)

Distortions produced by the peculiar velocity of galaxies 
that changes the line-of-sight position

s = r+
(1 + z)vk
H(z)

êk
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• Kaiser effect on large scales due to 
the infall of galaxies 

• Finger-of-God effect on small scale 
due to virialized random motion
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R e a l s p a c e : 

L i n e a r r e g i m e 

R e d s h i f t s p a c e : 

S q u a s h i n g e f f e c t 

T u r n a r o u n d 

C o l l a p s e d 

C o l l a p s i n g F i n g e r - o f - g o d 

Figure 2. Detail of how peculiar velocities lead to the redshift distortions illustrated in
Figure 1. The dots are ‘galaxies’ undergoing infall towards a spherical overdensity, and
the arrows represent their peculiar velocities. At large scales, the peculiar velocity of an
infalling shell is small compared to its radius, and the shell appears squashed. At smaller
scales, not only is the radius of a shell smaller, but also its peculiar infall velocity tends
to be larger. The shell that is just at turnaround, its peculiar velocity just cancelling
the general Hubble expansion, appears collapsed to a single velocity in redshift space. At
yet smaller scales, shells that are collapsing in proper coordinates appear inside out in
redshift space. The combination of collapsing shells with previously collapsed, virialized
shells, gives rise to fingers-of-god.

with radius, δ ∝ r−1, located in an expanding Universe with critical mean
density, Ω = 1. The free-fall gravitational collapse of such a spherical pres-
sureless overdensity can be computed analytically (Peebles 1980, §18). The
dots (galaxies) started out uniformly distributed in the initial conditions,
being uniformly placed around a series of uniformly spaced concentric shells.
Thus the density of dots in Figure 1 indicates the density of galaxies in the
collapsing overdensity, as observed in redshift space. Figure 1 omits shells
that have collapsed to less than half their radius at turnaround, which shells
may be expected to scatter off previously collapsed shells, and to virialize.

Figure 2 shows how peculiar velocities produce the pattern illustrated
in Figure 1. On large scales, peculiar infall towards the overdensity causes
it to appear squashed along the line of sight. The squashing increases to



RSDs: quantify anisotropic clustering
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Modelling RSDs: linear theory 
Kaiser (1987)

Ps(k, µ) = (1 + �µ2
k)

2Pr(k) �! ⇠(s, µ) = [1 + �(@/@z)2(r2)�1]2⇠(r)

Hamilton (1992)
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Modelling RSDs: nonlinear model
Crocce & Scoccimarro (2006), Sánchez et al (2017)
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Modelling RSDs: nonlinear model
Crocce & Scoccimarro (2006), Sánchez et al (2017)
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Modelling RSDs: nonlinear model
Crocce & Scoccimarro (2006), Sánchez et al (2017)
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Fourier transform
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Modelling RSDs: nonlinear model
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Modelling RSDs: nonlinear model
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Summary
• Measurements of redshift space distortions can help us to 

distinguish between gravity models. 

• We found that the linear model fails to recover the true value of 
the distortion parameter.  

• The fact that the nonlinear model produces reasonable results 
for modified gravity give us a means to measure a signature of 
modified gravity in the large-scale structure of the Universe.  

• Despite the capability of distinguish between gravity models, 
our results suggest that the impact of RSD on f(R) gravity 
models is small enough to be differentiated from GR.


