The Horizon-AGN Simulation

Effect of baryons on small scale weak lensing statistics

Raphaël Gavazzi (IAP)

Collaborators: C. Gouin, C. Pichon, C. Laigle, Y. Dubois, S. Codis, E. Chisari...

Gouin et al. 2019, submitted to A&A

... this week on arXiv
Baryons may matter

Small non-linear scales contribute to cosmic shear signal. As we get close to (1-)halo scales, baryons do not behave exactly like DM.
Hydrodynamical simulations

Ratio of two point total matter density power spectra

Chisari et al. 2018

Potential source of bias for Cosmic shear

Semboloni et al. 2011
Baryons in halos

Prescriptions on how gas (and stars) will be distributed inside halos and how DM particles in DM-only sims will respond.

Main degrees of freedom: slope of gas density profile and outermost radius of ejection)… and stellar mass of central

Can capture results of hydro-sims (H-AGN, Illustris*, EAGLE, OWLS) and mimic the impact on matter PS.

Observations easily set $M_\star \mid M_{\text{halo}}$

X-ray clusters can constrain slope and outermost radius but the main uncertainty is the hydrostatic mass bias (ie what is the actual halo mass of a cluster with a given observed gas profile? → related to cluster lensing mass modeling)
Horizon-AGN past lightcone

Why a full ray-tracing?

Compare amplitude of baryonic effects with small scale effects (γ → g, beyond Born, magnification bias)

Insights on Stellar-to-halo mass relations: gal-gal lensing (weak and strong)

Mock lensed galaxy catalogs (gal evolution)

Mock lensed images (“end-to-end” studies)

Light-cone properties

✓ 5 square degrees until z~1
✓ 1 square degree until z~7

Deflection in each plane derived from Simulation transverse acceleration (no proj of particles)

Observer
Convergence Power Spectrum

Born approximation
1% valid up to $l \sim 10^5$

For $0.5 < z_s < 1.5$, $\frac{\Delta P_{\kappa}}{P_{\kappa}}$
-2% for $l > 10^3$
-10% for $4000 < l < 2000$
Then cooled baryons kick in
Shear correlation functions

\[\xi_{\pm}(\theta) = \langle \gamma_+(\theta + \theta)\gamma_+(\theta) \rangle_{\theta} \pm \langle \gamma_+(\theta + \theta)\gamma_-(\theta) \rangle_{\theta} \]

\[= 2\pi \int d\ell \ell J_{1/4}(\theta \ell) P_\kappa(\ell), \]

\[g \equiv \frac{\gamma}{1 - \kappa} \]

1-5% increase on few arcmin angular scales

Baryons \(\rightarrow\) 10% depletion on few arcmin angular scales

(+large boost from stars below 1arcmin)
Galaxy-Galaxy lensing (GGL)

Good agreement with CMASS lenses \(\times \) CFHTLenS+CS82 sources

\[\gamma_t \propto \Delta \Sigma(R) = \int dz \, \bar{\rho} \xi_{g,m}(r) \]

\(\rightarrow \) H-AGN \(M^*-M_{\text{halo}} \) relation consistent

Small excess below 200 kpc: ??gas not sufficiently pushed out??

\[\Delta \Sigma \text{ [Mpc}^2 \text{M}_\odot^{-2}] \]

\[\text{Radius [Mpc]} \]

- \(z_l=0.55, M^*>1.70, \text{SPL Total} \)
- \(z_l=0.55, M^*>1.70, \text{SPL DM} \)
- \(z_l=0.55, M^*>1.70, \text{SPL Baryons} \)
- \(z_l=0.55, M^*>1.70, \text{OBB Total} \)
Bright objects with material along the line of sight get preferentially selected...

Also true for foreground lenses if z_l is large enough (>0.6)
Effect of Magnification bias on GGL

High- z magnif bias impact (see also Ziou&Hui 08)

large scale boost of shear: 20 to 50%

Strong for Euclid spec sample:
When combining 3x2-point Cls <gg>, <mm> and <gm> won’t line up!
Shear ratio tests: \(\gamma(z_l,z_s1)/\gamma(z_l,z_s2) = (D_{ls1}/D_{s1}) / (D_{ls2}/D_{s2}) \Rightarrow \text{cosmography} \)

tests are in trouble because intervening matter causing mag bias will act differently on source planes \(z_{s1} \) and \(z_{s2} \)
Mock images

Band u,g,z

before lensing

1 degree

~ 1 arcmin
Mock images

Band u,g,z

after lensing

1 degree

~ 1 arcmin
Mock images

No Lensing
Mock images
Baryons: significant role in 2-pt shear statistics

- >1% for k>0.1 h/Mpc, as high as 25% at 10 h/Mpc
- Gas distribution in clusters and groups (expelled fraction, how far?) captures main features (Schneider, Teyssier et al. 2015, 2019)

Room for improvement in “Baryonic corrections”:
- Cluster lensing to calibrate mass-observables
- Diffuse gas distribution at r>r_{500}
- Sub-grid physics and larger hydro-simulation boxes

3D→2D full raytracing: does not change picture
- beyond-Born
- reduced-shear

Galaxy-Galaxy Lensing:
- Magnification bias can bias 3x2pt high-z analyses and shear ratio tests.
- Wealth of information in mock images for end-to-end studies
Strong lensing

Horizon-AGN has the resolution to probe internal structure of galaxies
\[
\rho_{\text{dmo}}(r) = \rho_{\text{nfw}}(r) + \rho_{2h}(r).
\]

\[
\rho_{\text{dmb}}(r) = \rho_{\text{gas}}(r) + \rho_{\text{cga}}(r) + \rho_{\text{clm}}(r) + \rho_{2h}(r),
\]

\[
\rho_{\text{gas}}(r) = \frac{\rho_{\text{gas,0}}}{(1 + u)\beta(1 + v^2)^{(7-\beta)/2}}
\]

\[
v = r/r_{\text{ej}},
\]

\[
r_{\text{ej}} = \theta_{\text{eq}}r_{200}
\]

\[
\beta(M_{200}) = 3 - \left(\frac{M_c}{M_{200}}\right)^{\mu}
\]

<table>
<thead>
<tr>
<th>Name</th>
<th>Comp.</th>
<th>Description</th>
<th>Equation</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\theta_{\text{ej}})</td>
<td>Gas</td>
<td>Parameter specifying the maximum radius of gas ejection relative to the virial radius.</td>
<td>(2.12)</td>
<td>free</td>
</tr>
<tr>
<td>(\theta_{\text{co}})</td>
<td>Gas</td>
<td>Parameter specifying the core radius of the gas profile relative to the virial radius.</td>
<td>(2.12)</td>
<td>fixed</td>
</tr>
<tr>
<td>(M_c)</td>
<td>Gas</td>
<td>Parameter related to the slope of the gas profile: defines the characteristic mass scale where the slope becomes shallower than minus three.</td>
<td>(2.16)</td>
<td>free</td>
</tr>
<tr>
<td>(\mu)</td>
<td>Gas</td>
<td>Parameter related to the slope of the gas profile: defines how fast the slope becomes shallower towards small halo masses.</td>
<td>(2.16)</td>
<td>free</td>
</tr>
<tr>
<td>(A, M_1)</td>
<td>Star</td>
<td>Parameters related to the stellar fractions: normalisation and slope of the power-law describing the halo mass dependence.</td>
<td>(2.11)</td>
<td>fixed</td>
</tr>
<tr>
<td>(\eta_{\text{star}})</td>
<td>Star</td>
<td>Parameter specifying the total stellar fraction within a halo (including central galaxy, satellites, and halo stars).</td>
<td>(2.11)</td>
<td>free</td>
</tr>
<tr>
<td>(\eta_{\text{cga}})</td>
<td>Star</td>
<td>Parameter specifying the stellar fraction of the central galaxy.</td>
<td>(2.11)</td>
<td>free</td>
</tr>
<tr>
<td>(R_h)</td>
<td>Star</td>
<td>Parameter specifying the truncation radius of the central galaxy.</td>
<td>(2.10)</td>
<td>fixed</td>
</tr>
<tr>
<td>(\varepsilon)</td>
<td>DM</td>
<td>Parameter specifying the truncation radius of the NFW profile.</td>
<td>(2.6)</td>
<td>fixed</td>
</tr>
<tr>
<td>(a, n)</td>
<td>DM</td>
<td>Parameters related to adiabatic relaxation of the dark matter (including galaxy satellites and halo stars).</td>
<td>(2.17)</td>
<td>fixed</td>
</tr>
<tr>
<td>(q, p)</td>
<td>2-halo</td>
<td>Standard parameters specifying the 2-halo term (excursion-set modelling).</td>
<td>(2.9)</td>
<td>fixed</td>
</tr>
</tbody>
</table>
Born approximation

Implicit equation for the source plane angular coordinates:
Integrates deflections along perturbed light rays

$$\beta(\theta, \chi_s) = \theta - \frac{2}{c^2} \int_0^{\chi_s} d\chi \frac{\chi_s - \chi}{\chi_s \chi} \nabla_\beta \phi (\beta(\theta, \chi), \chi)$$

Born Approximation: Integrates deflections along unperturbed light rays

$$\beta(\theta, \chi_s) = \theta - \frac{2}{c^2} \int_0^{\chi_s} d\chi \frac{\chi_s - \chi}{\chi_s \chi} \nabla_\theta \phi (\theta, \chi)$$