
Raphaël Gavazzi  (IAP) 

The Horizon-AGN Simulation
Effect of baryons on small scale weak lensing statistics

Collaborators:  C. Gouin, C. Pichon, C. Laigle, Y. Dubois, S. Codis, E. Chisari... 

Gouin et al. 2019, submitted to A&A 
… this week on arXiv 



Baryons may matter 
Small non-linear scales contribute to cosmic shear signal. 
As we get close to (1-)halo scales, baryons do not behave exactly like DM  
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Hydrodynamical simulations 
Horizon-AGN cosmological simulation 

100 Mpc/h, 10243 DM particles 
 
Eulerian treatment of gas physics with AMR 
grid  (RAMSES) 
DM mass resolution  8x108 Msun 
1 kpc spatial resolution   (8th level) 
 
Implemented baryonic processes: 
•  gas dynamics 
•  gas heating/cooling 
•  star formation/evolution (age, metallicity...) 
•  Supernova & AGN feedback 
•  Supermassive Black Holes 

Trade-off between high-resolution 
requirements and simulation volume 
exacerbated 

Dubois et al 2014 
Ratio of two point  total matter 
density power spectra 
 
 
 
 
 
 
 

Chisari et al 2018 

Potential source of bias for 
Cosmic shear 
 
 
 
 
 
 

Semboloni et al 2011 



Baryons in halos 
Schneider, Teyssier et al 2015, 2019 

Prescriptions on how gas (and stars) will be distributed inside halos and how 
DM particles in DM-only sims will respond. 
 
Main degrees of freedom:  slope of gas density profile and outermost radius of 
ejection)… and stellar mass of central 
  
Can capture results of hydro-sims  
(H-AGN, Illustris*, EAGLE, OWLS) and 
mimic the impact on matter PS. 
 
Observations easily set  M* | Mhalo 
 
X-ray clusters can constrain slope and  
outermost radius but the main uncertainty 
is the hydrostatic mass bias 
(ie what is the actual halo mass of a cluster 
with a given observed gas profile? 
   à related to cluster lensing mass modeling) 
 
 



Horizon-AGN past lightcone 

Why a full ray-tracing? 
 
Compare amplitude of baryonic effects with 
small scale effects (γàg, beyond Born, 
magnification bias) 
 
Insights on Stellar-to-halo mass relations:  

  gal-gal lensing (weak and strong) 
 
Mock lensed galaxy catalogs (gal evolution) 
 
Mock lensed images (“end-to-end” studies) 

Deflection in each plane derived from 
Simulation transverse acceleration (no proj of 
particles) 



Convergence Power Spectrum 

Born approximation 
1% valid up to l~105 !  

For 0.5< zs <1.5 ,  ΔPκ/Pκ  
  -2% for l >103  
 -10% for 4000<l <2000 
Then cooled baryons kick in 
  



Shear correlation functions 

Baryons à 10% depletion on 
few arcmin angular scales 
 
(+large boost from stars below 
1arcmin)  
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in fact

h"i = g ⌘ �

1 �  ' � , (21)

with, g, the so-called reduced shear. Therefore, the two point
correlations of ellipticities and shear only match when the con-
vergence  is small. Since the regions of large convergence are
typically the centres of halos where the contribution of cooled
baryons is highest, one might expect a coupling between the
inclusion of baryons and the shear reduced-shear corrections
needed to properly interpret the cosmological signal carried by
the 2-point statistics (e.g. White 2005; Kilbinger 2010)

Owing to the spin-2 nature of ellipticity, one can define the
angular correlation functions ⇠±

⇠±(✓) = h�+(# + ✓)�+(#)i# ± h�⇥(# + ✓)�⇥(#)i# , (22)

= 2⇡
Z

d` `J0/4(✓`)P(`) , (23)

where �+ and �⇥ are defined with respect to the separation vector
between two galaxies or, here any two image plane positions at
separation ✓. J0 and J4 are 0th and 4th order Bessel functions.

Instead of the shear, observers can only measure associated
ellipticities ✏, which should thus replace � in equation (22) in
practical measurements. The reduced shear maps were computed
together with shear and convergence maps, so as to measure the
modified ⇠+ and ⇠� angular correlations to compare them with
the actual correlation functions. For e�ciency, the Athena code4

was used to compute correlation functions.
The results are shown in Fig. 8 for a fiducial source red-

shift zs = 0.5. Here ⇠g+ and ⇠�+ only depart from one another
at the ⇠ 2 � 3% level on angular separations ⇠ 10. The e↵ect is
slightly stronger for ⇠� which is known to be more sensitive to
smaller non-linear scales than ⇠+, but also more di�cult to mea-
sure in the data because of its lower amplitude. On 10 scales,
⇠g�/⇠

�
� � 1 ' 7 � 8%. Like for the power spectra in the pre-

vious subsection, the cyan curves represent the correlations ⇠�±
for the rescaled DM contribution. The bottom panel shows the
ratio of rescaled DM over full physics reduced shear correla-
tion functions, further illustrating the e↵ect of baryons on small
scales. Again, ⇠� responds more substantially to the inclusion of
baryons. The deficit of correlation amplitude when baryons are
taken into account peaks at 3 � 40 and is of order 10%. Below
10, the e↵ect starts to increase but those scales are never used in
practical cosmic shear applications.

As shown in the next section, those scales remain perfectly
relevant for galaxy evolution studies by means of the Galaxy-
Galaxy weak lensing signal.

5. Galaxy-Galaxy lensing

Focussing further into dark matter halos, let us now investigate
the yields of the simulation in terms of the galaxy-galaxy weak
lensing signal. The tangential alignment of background galax-
ies around foreground deflectors is substantially altered by the
aforementioned baryonic physics, and one also expects a strong
signature in this particular lensing regime.

For a circularly symmetric mass distribution ⌃(R), one can
relate shear, convergence and the mean convergence enclosed
inside a radius R centred on a foreground galaxy or halo as:

̄(< R) =
2

R2

Z
R

0
(R0)R0dR

0 = (R) + �(R) . (24)

4 http://www.cosmostat.org/software/athena

Fig. 8. Upper panel: Two-point shear correlation functions ⇠+ (solid
lines) and ⇠� (dotted lines) for a fiducial source redshift zs = 0.5. We
either correlate actual shear (red) or reduced shear (green) in the calcu-
lation to highlight the small scale impact of baryons on this non linear
correction. Middle panel: ratio of shear correlation functions for the two
cases. Bottom panel: ratio of shear correlation functions for a raytracing
that only includes rescaled DM particules or all the components.

Using the definition of the critical density (5), one can define the
excess density

�⌃(R) =
M(< R)
⇡R2 � ⌃(R) , (25)

= ⌃crit�(R) . (26)

The previous section already showed that the lensing conver-
gence or shear maps have adequate statistical properties, while
Sect. 3.6 showed how to use the associated deflection maps to
map our lightcone galaxy catalogue into the image plane. In ad-
dition, galaxies should also get magnified when lensed. Future
extensions of this work will include the realistic photometry of
the Horizon-AGN galaxies. One can however easily account for
the magnification bias by multiplying stellar masses by the mag-
nification µ, as if luminosity or flux were a direct proxy for stellar
mass. In the following, we shall refer to M⇤ for the intrinsic and
µM⇤ for the magnified mass proxy.

For any given source redshift, averages of the tangential
shear around galaxies of any given stellar mass M⇤ or more re-
alistically magnified stellar mass µM⇤. This is done around de-
flected galaxy positions.

5.1. Comparison with CMASS galaxies

Let us first make a comparison of the GGL around Horizon-
AGN galaxies with the GGL excess mass profiles obtained by
Leauthaud et al. (2017) who analysed the spectroscopic CMASS
sample of massive galaxies in the footprint of the CFHTLS and
CS82 imaging surveys, covering ⇠ 250 deg2. These authors paid
particular attention to quantifying the stellar mass of the CMASS
galaxies centred around lens redshift z ⇠ 0.55. The CMASS
sample is not a simple mass selection, and includes a set of
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10, the e↵ect starts to increase but those scales are never used in
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As shown in the next section, those scales remain perfectly
relevant for galaxy evolution studies by means of the Galaxy-
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the yields of the simulation in terms of the galaxy-galaxy weak
lensing signal. The tangential alignment of background galax-
ies around foreground deflectors is substantially altered by the
aforementioned baryonic physics, and one also expects a strong
signature in this particular lensing regime.
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Fig. 8. Upper panel: Two-point shear correlation functions ⇠+ (solid
lines) and ⇠� (dotted lines) for a fiducial source redshift zs = 0.5. We
either correlate actual shear (red) or reduced shear (green) in the calcu-
lation to highlight the small scale impact of baryons on this non linear
correction. Middle panel: ratio of shear correlation functions for the two
cases. Bottom panel: ratio of shear correlation functions for a raytracing
that only includes rescaled DM particules or all the components.

Using the definition of the critical density (5), one can define the
excess density

�⌃(R) =
M(< R)
⇡R2 � ⌃(R) , (25)

= ⌃crit�(R) . (26)

The previous section already showed that the lensing conver-
gence or shear maps have adequate statistical properties, while
Sect. 3.6 showed how to use the associated deflection maps to
map our lightcone galaxy catalogue into the image plane. In ad-
dition, galaxies should also get magnified when lensed. Future
extensions of this work will include the realistic photometry of
the Horizon-AGN galaxies. One can however easily account for
the magnification bias by multiplying stellar masses by the mag-
nification µ, as if luminosity or flux were a direct proxy for stellar
mass. In the following, we shall refer to M⇤ for the intrinsic and
µM⇤ for the magnified mass proxy.

For any given source redshift, averages of the tangential
shear around galaxies of any given stellar mass M⇤ or more re-
alistically magnified stellar mass µM⇤. This is done around de-
flected galaxy positions.

5.1. Comparison with CMASS galaxies

Let us first make a comparison of the GGL around Horizon-
AGN galaxies with the GGL excess mass profiles obtained by
Leauthaud et al. (2017) who analysed the spectroscopic CMASS
sample of massive galaxies in the footprint of the CFHTLS and
CS82 imaging surveys, covering ⇠ 250 deg2. These authors paid
particular attention to quantifying the stellar mass of the CMASS
galaxies centred around lens redshift z ⇠ 0.55. The CMASS
sample is not a simple mass selection, and includes a set of
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Galaxy-Galaxy lensing (GGL) 

Introduction Amas de galaxies Galaxies massives Simulations Conclusion

Relation Masse stellaire – Masse du Halo
Galaxy-Galaxy lensing

Re-connexion avec simulations hydro, requiert Mh.
Essais avec 22 lentilles SLACS (HST). Grand-champ
plus adaptées pour corrélation 2-pt galaxie-masse
�t / �⌃(R) =

R
dz ⇢⇠g,m(r).

On attend di↵érences entre centrales satellites

Galaxies de champ CFHT Données AMALGAM

Environ 80% de la masse stripped

Good agreement with  
CMASS lenses  x CFHTLenS+CS82 sources 
 
à H-AGN M*-Mhalo relation consistent 
 
Small excess below 200 kpc: 
??gas not sufficiently pushed out?? 

Gouin et al.: Raytracing through the Horizon-AGN lightcone

For any given source redshift, averages of the tangential
shear around galaxies of any given stellar mass M⇤ or more re-
alistically magnified stellar mass µM⇤. This is done around de-
flected galaxy positions.

5.1. Comparison with CMASS galaxies

Let us first make a comparison of the GGL around Horizon-
AGN galaxies with the GGL excess mass profiles obtained by
Leauthaud et al. (2017) who analysed the spectroscopic CMASS
sample of massive galaxies in the footprint of the CFHTLS and
CS82 imaging surveys, covering ⇠ 250 deg2. These authors paid
particular attention to quantifying the stellar mass of the CMASS
galaxies centred around lens redshift z ⇠ 0.55. The CMASS
sample is not a simple mass selection, and includes a set of
colour cuts, which makes this just a broad brush comparison.
These results are somewhat sensitive to the detailed distribution
in stellar mass above that threshold. The sample mean mass only
slightly changes with redshift but remains close to 3 ⇥ 1011M�.

In order to match this lens sample, we extract from the
wide low redshift lightcone the galaxies in the redshift range
0.4  z  0.70, and with a stellar mass above a threshold that
is chosen to match the CMASS mean stellar mass. Even though
these galaxies centred around lens redshift z ⇠ 0.52 are treated
as lens galaxies, they experience a modest amount of magnifi-
cation (they behave like sources behind the mass distribution at
yet lower redshift, see Sect. 5.2). We thus pick galaxies satisfy-
ing µM⇤ > 1.7 ⇥ 1011M�. At this stage, selecting on M⇤ or µM⇤
does not make any significant di↵erence (. 4%) because of the
relatively low redshift of the lens sample. By doing so, we obtain
the same sample mean stellar mass as the CMASS sample.

We now measure the mean tangential shear around those
galaxies for a fiducial, unimportant, source redshift zs = 1 and
convert shear into excess density �⌃. The result can be seen
in Fig. 9. A good agreement between our predictions (OBB
method, green with lighter envelope) and the observations of
Leauthaud et al. (2017) (blue dots) is found, further suggest-
ing that Horizon-AGN galaxies live in the correct massive halos
(Mh ' 1013M�), or at the very least, produce the same shear pro-
file as CMASS galaxies around them. Note that we split the 2.25
deg field of view into 4 quadrants and used the dispersion among
those areas to compute a rough estimate of model uncertainties.

On scales R . 0.2 h
�1 Mpc, the shear profile is 10-15% above

the observations. Answering whether the discrepancy is due to
faulty subgrid baryonic physics, a missing cosmological ingredi-
ent (or not perfectly adequate cosmological parameters) or left-
over systematics in the data will certainly require more GGL
observations, possibly combined with yet smaller scale strong
lensing and kinematical data (e.g. Sonnenfeld et al. 2018). Small
scale GGL is definitely a unique tool to address those issues (e.g.
Velliscig et al. 2017), and asserting that the galaxy-halo connec-
tion is correctly reproduced by the simulations all the way to
z & 1, is arguably one of the foremost goals of galaxy formation
models.

Fig. 9 also shows our GGL results for the same popula-
tion of lenses at the same redshift but as inferred from the
SPL method (solid black) which allows to split the total lens-
ing signal into its dark matter (blue and baryonic compo-
nents (red). First of all, we do see a remarkable agreement
between the two methods for the total lensing signal, except
on scales & 2 Mpc ⇠ 50 where di↵erences start exceeding the
percent level. As already mentioned in the previous section,
this is due to inaccuracies of the Fourier transforms per-
formed with the SPL method. We can however use this lat-

ter technic to compare the contribution of DM and baryons
(stars+gas). Clearly, the total and DM profiles look very sim-
ilar beyond ⇠ 0.2 Mpc up to a ⇠ 17% renormalisation of
the matter density. It is only below those scales that cooled
baryons (stars) start playing a substantial contribution. We
predict an equal contribution of DM and stars to the total
shear signal near a radius ⇠ 15 kpc. We refer the reader to
Peirani et al. (2017) for further details about the innermost
density profiles around Horizon-AGN galaxies in the context
of the cusp-core problem.

10- 2 10- 1 100 101 
0

5

10

15

Radius [Mpc/h]

R 
x 
Δ
Σ

   
  [

 M
pc

  M
su

n p
c-2

 ]

Leauthaud++17
zl=0.55,  M*>1.70, SPL Total
zl=0.55,  M*>1.70, SPL DM
zl=0.55,  M*>1.70, SPL Baryons
zl=0.55,  M*>1.70, OBB Total

Fig. 9. Comparison of the GGL tangential shear signal around z = 0.55
Horizon-AGN galaxies (green curve surrounded by light-green “rib-
bon”) and the GGL observations of Leauthaud et al. (2017) (blue dots
with error bars). Units are all physical (and not comoving!). Model un-
certainties in the simulation past lightcone are roughly estimated by
splitting the 2.25 deg wide field of view into 4 quadrants. They may
be underestimated beyond 1 h

�1 Mpc. Cuts in stellar mass are expressed
in units of 1011M�. Black, blue, and red curves show the GGL shear
signal predicted with the SPL method for the total, DM, and bary-
onic mass distributions respectively. For clarity uncertainties are
omitted. They are similar to the OBB method case (green).

5.2. High redshift magnification bias

For zl & 0.6, the lens population starts being lensed by yet nearer
structures. This can lead to a magnification bias, which was stud-
ied by Ziour & Hui (2008). Besides, lens-lens coupling will
also play a role and can make the picture even more complex for
distant deflectors.

The spatial density of a lensed population of background
sources can be enhanced or decreased by magnification as light
rays travel through over- or under-dense sight-lines (eg Moess-
ner & Jain 1998; Moessner et al. 1998; Ménard & Bartelmann
2002; Scranton et al. 2005). Furthermore, the fraction of sources
that are positively or negatively magnified depends on the slope
of the luminosity function of the population. If it is very steep
(typically the bright end of a population) one can observe a dra-
matic increase of the number of bright lensed objects. These
deflectors appear brighter than they actually are. Fig. 10 shows
the mean magnification experienced by Horizon-AGN lightcone
galaxies above a given stellar mass threshold (mimicking a more
realistic flux limit) as a function of redshift and minimum mass.
The upper panel does not take into account the e↵ect of mag-
nification bias whereas the lower panel does. The ones that are
consistently magnified and pass a given threshold (bottom panel)
are slightly magnified on average whereas the top panel only
shows a tiny constant µ ⇠ 1 � 3% systematic residual magnifi-
cation. This residual excess does not depend wether the SPL or
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Magnification bias 

Bright objects with material along the line of sight get preferentially selected… 
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OBB method are used, or whether we properly integrate rays or
use the Born approximation. This is likely due to the replicates
of the simulation box filling up the lightcone which slightly in-
crease the probability of rays leaving an over-dense region to
cross other over-dense regions on their way to the observer. This
residual magnification is however tiny for sight-lines populated
by galaxies and completely vanishes for rays coming for random
positions.

At face value, one can see that the massive end of the galaxy
stellar mass function is significantly magnification-biased. A ⇠
8% e↵ect for galaxies at 0.6  z  1.2 and M⇤ & 2 ⇥ 1011M�
is typical. It can be as high at ⇠ 20 � 50% at 1.5  z  2 for
µM⇤ & 3 ⇥ 1011M�. A thorough investigation of the impact of
this magnification bias when trying to put constraints on the high
end of the z & 2 luminosity function from observations is left for
a forthcoming paper.
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Fig. 10. Average magnification experienced by presumably foreground
deflectors accounting (bottom) or not (top) for magnification bias e↵ect
which mostly a↵ects the rapidly declining high end of the stellar mass
function. Without magnification bias, a flat nearly unity mean magnifi-
cation at all redshifts is recovered to within ⇠ 1%. When the magnifica-
tion bias is turned on, as expected in actual observations, no rapid rise
is found (⇠ 10% at z ⇠ 1 for the most massive/luminous galaxies). Cuts
in stellar mass are expressed in units of 1011M�.

Taking magnification bias into account, let us now explore
three fiducial populations of massive deflectors to highlight the
changes induced on projected excess density profiles. The first
population consists in the aforementioned CMASS galaxies at
z = 0.54 and µM⇤ � 1.7 ⇥ 1011M�, the second case simply
corresponds to the same lower limit on the mass but pushed
to z = 0.74. In both cases, the excess density is measured for

source redshift zs = 0.8. The last lens sample corresponds to
the population of H↵ emitters in the 0.9  z  1.8 redshift
range that will be detected by the Euclid slit-less grism spec-
trograph above a line flux of ⇠ 2 ⇥ 10�16 erg s�1 cm�2. One ex-
pects about 2000 such sources per square degree; therefore the
2000 most massive Horizon-AGN lightcone sources are picked
in that redshift intervalle to crudely mimic an H↵ line flux se-
lection. To account for magnification bias, the selection is made
on µM⇤, too, and the source redshift for this populations is set
to zs = 2. Results for these three populations can be seen in the
top panel of Fig. 11, where we distinguish the excess density
profiles accounting (dotted) or not (solid) for magnification. As
anticipated, no significant change is obtained for the z = 0.54
CMASS-like sample (green) but di↵erences are more noticeable
as lens redshift increases and on large scales (R & 1 Mpc), we
observe a 20 � 50% increase in �⌃, consistent with the large
scale linear scale-invariance bias model used by Ziour & Hui
(2008). Between z = 0.54 and z = 0.74, galaxies of the same
mass seem to live in halos of the same mass (very little evo-
lution of the M⇤ � Mh relation), leading to no evolution of �⌃
below ⇠ 200 kpc. The only di↵erence occurs further out where
the 2-halo term starts to be important in this galaxy-mass corre-
lation function. There, galaxies of the same mass at z = 0.54 and
z = 0.74 live in rarer excursions of the initial density field, and
are thus more highly biased leading to an increase of �⌃ on large
scale. For the Euclid-like distant lens population, the trend is
similar and the amplitude of the magnification bias e↵ect would
suggest a bias of the lens population about 30% higher than it
really is.

The lower panel of Fig. 11 shows the evolution of the magni-
fication bias induced excess density profile with source redshift
for massive deflectors at z = 0.74. In principle, according to
equation (26), the excess density should not depend on source
redshift. However, magnification bias favours the presence of
over-densities in front of deflectors. The response of distance
sources carrying shear to these over-densities will depend on the
source redshift in a way that is not absorbed by equation (26).
Hence, a scale dependent distortion of the profiles is observed.
The closer the source redshift from the deflector, the smaller the
scale it kicks in. As already stressed by Ziour & Hui, this ham-
pers a direct application of shear-ratio tests with high redshift
deflectors (eg Jain & Taylor 2003).

6. Summary & future prospects

Using two complementary methods to project the density or
gravitational acceleration field from the Horizon-AGN light-
cone, we propagated light rays and derived various gravitational
lensing observables in the simulated field of view. The simu-
lated area is 2.25 deg2 out to z = 1 and 1 deg2 all the way to
z = 7. The e↵ect of baryons on the convergence angular power
spectrum P(`) was quantified, together with the two-point shear
correlations ⇠±(✓) and the galaxy-galaxy lensing profile around
massive simulated galaxies.

Subtle e↵ects showing up when going beyond the Born
approximation, lens-lens coupling, and the shear - reduced shear
approximations were accounted for.

For cosmic shear, the inclusion of baryons induces a deficit
of power in the convergence power spectrum of order 10% for
103 < ` < 104 at zs = 0.5. The amplitude of the distortion
is about the same at zs = 1 but is slightly shifted to roughly
twice as high ` multipole values. On yet higher multipoles, the
cooled baryons, essentially in the form of stars, produce a dra-
matic boost of power, nearly a factor 2 for ` ⇠ 105. As empha-
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Effect of Magnification bias on GGL Gouin et al.: Raytracing through the Horizon-AGN lightcone
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Fig. 11. Upper panel: E↵ect of magnification bias on GGL for several
high-z fiducial lens samples showing an increase of excess density �⌃
(or tangential shear) for R & 1 Mpc. Solid curves ignore the magnifica-
tion whereas dotted lines account for it. Lower panel: Dependence of
this e↵ect on the source redshift. In both panels, cuts in stellar mass are
expressed in units of 1011M�.

sised in (Chisari et al. 2018), it is worth stressing that detailed
quantitative statements on such small angular scales may still
depend on the numerical implementation of baryonic processes.

For Galaxy-Galaxy lensing, the projected excess density pro-
files for a sample of simulated galaxies consistent with the
CMASS sample at z ⇠ 0.52 (analysed by Leauthaud et al. 2017)
were found to be in excellent agreement. To properly analyse
this signal around high redshift deflectors, the magnification bias
a↵ecting the bright end of a population of distant galaxies was
carefully taken into account, showing a large scale increase of
the signal as high as 30% beyond 1 Mpc for lenses at z & 1. This
kind of e↵ect is particularly well suitedpronounced for future
samples of distant deflectors, such as the spectroscopic Euclid
sources detected based on their H↵ line intensity.

Peirani et al. (2018) already showed that the innermost parts
of Horizon-AGN galaxies are consistent with strong lensing ob-
servations of Sonnenfeld et al. (2013) and Newman et al. (2013,
2015) at zlens . 0.3. We intend to make more predictions on
the optical depth for strong lensing in the Horizon-AGN light-
cone with our implemented raytracing machinery. Likewise, in
a forthcoming paper we will present the results of the deflection
field applied to simulated images derived from the light emit-
ted by the stars produced in the simulation, hence enabling the
possibility to measure lensing quantities (shear, magnification...)
in the very same way as in observations: shape measurement in

the presence of noise, Point Spread Function, pixel sampling,
photometric redshift determinations, realistic galaxy biasing and
more generally directly predicted galaxy-mass relation, and also
the intrinsic alignment of galaxies and their surrounding halos
(Codis et al. 2015; Chisari et al. 2015, 2016).
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large scale boost of shear: 20 to 50% 

Strong for Euclid spec sample: 
    When combining 3x2-point Cls 
    <gg>, <mm> and <gm> won’t line up! 

(see also Ziou&Hui 08) 



Effect of Magnification bias on GGL 
Shear ratio tests :  γ(zl,zs1)/γ(zl,zs2) = (Dls1/Ds1) / (Dls2/Ds2)  à cosmography 
tests  are in trouble because intervening matter causing mag bias will act 
differently on source planes zs1 and zs2 
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Gouin et al.: Raytracing through the Horizon-AGN lightcone
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Fig. 11. Upper panel: E↵ect of magnification bias on GGL for several
high-z fiducial lens samples showing an increase of excess density �⌃
(or tangential shear) for R & 1 Mpc. Solid curves ignore the magnifica-
tion whereas dotted lines account for it. Lower panel: Dependence of
this e↵ect on the source redshift. In both panels, cuts in stellar mass are
expressed in units of 1011M�.

sised in (Chisari et al. 2018), it is worth stressing that detailed
quantitative statements on such small angular scales may still
depend on the numerical implementation of baryonic processes.

For Galaxy-Galaxy lensing, the projected excess density pro-
files for a sample of simulated galaxies consistent with the
CMASS sample at z ⇠ 0.52 (analysed by Leauthaud et al. 2017)
were found to be in excellent agreement. To properly analyse
this signal around high redshift deflectors, the magnification bias
a↵ecting the bright end of a population of distant galaxies was
carefully taken into account, showing a large scale increase of
the signal as high as 30% beyond 1 Mpc for lenses at z & 1. This
kind of e↵ect is particularly well suitedpronounced for future
samples of distant deflectors, such as the spectroscopic Euclid
sources detected based on their H↵ line intensity.

Peirani et al. (2018) already showed that the innermost parts
of Horizon-AGN galaxies are consistent with strong lensing ob-
servations of Sonnenfeld et al. (2013) and Newman et al. (2013,
2015) at zlens . 0.3. We intend to make more predictions on
the optical depth for strong lensing in the Horizon-AGN light-
cone with our implemented raytracing machinery. Likewise, in
a forthcoming paper we will present the results of the deflection
field applied to simulated images derived from the light emit-
ted by the stars produced in the simulation, hence enabling the
possibility to measure lensing quantities (shear, magnification...)
in the very same way as in observations: shape measurement in

the presence of noise, Point Spread Function, pixel sampling,
photometric redshift determinations, realistic galaxy biasing and
more generally directly predicted galaxy-mass relation, and also
the intrinsic alignment of galaxies and their surrounding halos
(Codis et al. 2015; Chisari et al. 2015, 2016).
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Baryons: significant role in 2-pt shear statistics  

•  >1% for k>0.1 h/Mpc, as high as 25% at 10 h/Mpc 

•  Gas distribution in clusters and groups (expelled 
fraction, how far?) captures main features              
(Schneider, Teyssier et al. 2015, 2019) 

•  Room for improvement in “Baryonic corrections”: 
•  Cluster lensing to calibrate mass-observables 
•  Diffuse gas distribution at r>r500 
•  Sub-grid physics and larger hydro-simulation boxes 

•  3Dà2D full raytracing: does not change picture 
•  beyond-Born 
•  reduced-shear 

•  Galaxy-Galaxy Lensing:  
•  Magnification bias can bias 3x2pt high-z analyses 

and shear ratio tests. 

•  Wealth of information in mock images for end-to-end 
studies 

Conclusion 







baryon nuisance parameters that have priors from direct gas observations. Furthermore, the
method operates on outputs of N -body simulations and is therefore not limited to two-point
statistics as it is the case for approaches using the halo model.

The paper is organised as follows: In Sec. 2 we describe the basics of the model, spec-
ifying the parametrisation of its different components. In Sec. 3 we quantify the effects of
individual parameters on the matter power spectrum and we provide a comparison with the
OWLS hydrodynamical runs. In Sec. 4, the model parameters are constrained with X-ray
observations assuming three different values for the hydrostatic mass bias of X-ray observa-
tions. Based on the best fitting parameters, we then provide predictions for the matter power
spectrum as well as the weak-lensing angular shear power spectrum and real-space correlation
in Sec. 5. We conclude our work in Sec. 6. The Appendices A and B are dedicated to a com-
parison with other hydrodynamical simulations and to a discussion of potential systematical
uncertainties of the model.

2 Baryonic correction model

In this section we start by introducing the basic principles of the baryonic correction (BC)
model. The parametrisation of each matter component (gas, stars, and dark matter) are
discussed in separate subsections. Before starting, let us highlight that throughout this paper
we define the virial radius of a halo (r200) with respect to the over-density criterion of 200
times the critical density of the universe (⇢crit). This means that r200 is obtained by equating
⇢(< r200) = 200⇢crit and the halo mass is therefore given by M200 = 4⇡200⇢critr3200/3.

2.1 Basic principle

In gravity-only N -body simulations both dark matter and baryons are assumed to only inter-
act gravitationally. With this simplifying assumption, the profiles of haloes are well described
by combining a truncated NFW profile (⇢NFW) [20, 21] with a 2-halo density component (⇢2h)
[22], i.e.,

⇢dmo(r) = ⇢nfw(r) + ⇢2h(r). (2.1)

The two terms of this total dark-matter-only (dmo) halo density profile are described in
Sec. 2.2.

In a more realistic scenario including baryons, gas is allowed to cool and to form stars at
the centres of haloes. At the same time, feedback effects from active galactic nuclei may heat
up the gas and push it towards the outskirts of haloes. It is therefore important to separately
model the dark matter, the gas, and the stellar halo components. We define a more realistic
dark-matter-baryon (dmb) profile of the form

⇢dmb(r) = ⇢gas(r) + ⇢cga(r) + ⇢clm(r) + ⇢2h(r), (2.2)

where the subscripts stand for the gas (gas), the central galaxy (cga), and the collisionless
matter components (clm), respectively. The latter is dominated by the dark matter compo-
nent but also contains the stellar halo and the satellite galaxies, which are assumed to act
as collisionless components following the same profile as the dark matter. The profiles of the
different model components of Eq. (2.2) are described in Secs. 2.3 - 2.5.

– 3 –

baryon nuisance parameters that have priors from direct gas observations. Furthermore, the
method operates on outputs of N -body simulations and is therefore not limited to two-point
statistics as it is the case for approaches using the halo model.

The paper is organised as follows: In Sec. 2 we describe the basics of the model, spec-
ifying the parametrisation of its different components. In Sec. 3 we quantify the effects of
individual parameters on the matter power spectrum and we provide a comparison with the
OWLS hydrodynamical runs. In Sec. 4, the model parameters are constrained with X-ray
observations assuming three different values for the hydrostatic mass bias of X-ray observa-
tions. Based on the best fitting parameters, we then provide predictions for the matter power
spectrum as well as the weak-lensing angular shear power spectrum and real-space correlation
in Sec. 5. We conclude our work in Sec. 6. The Appendices A and B are dedicated to a com-
parison with other hydrodynamical simulations and to a discussion of potential systematical
uncertainties of the model.

2 Baryonic correction model

In this section we start by introducing the basic principles of the baryonic correction (BC)
model. The parametrisation of each matter component (gas, stars, and dark matter) are
discussed in separate subsections. Before starting, let us highlight that throughout this paper
we define the virial radius of a halo (r200) with respect to the over-density criterion of 200
times the critical density of the universe (⇢crit). This means that r200 is obtained by equating
⇢(< r200) = 200⇢crit and the halo mass is therefore given by M200 = 4⇡200⇢critr3200/3.

2.1 Basic principle

In gravity-only N -body simulations both dark matter and baryons are assumed to only inter-
act gravitationally. With this simplifying assumption, the profiles of haloes are well described
by combining a truncated NFW profile (⇢NFW) [20, 21] with a 2-halo density component (⇢2h)
[22], i.e.,

⇢dmo(r) = ⇢nfw(r) + ⇢2h(r). (2.1)

The two terms of this total dark-matter-only (dmo) halo density profile are described in
Sec. 2.2.

In a more realistic scenario including baryons, gas is allowed to cool and to form stars at
the centres of haloes. At the same time, feedback effects from active galactic nuclei may heat
up the gas and push it towards the outskirts of haloes. It is therefore important to separately
model the dark matter, the gas, and the stellar halo components. We define a more realistic
dark-matter-baryon (dmb) profile of the form

⇢dmb(r) = ⇢gas(r) + ⇢cga(r) + ⇢clm(r) + ⇢2h(r), (2.2)

where the subscripts stand for the gas (gas), the central galaxy (cga), and the collisionless
matter components (clm), respectively. The latter is dominated by the dark matter compo-
nent but also contains the stellar halo and the satellite galaxies, which are assumed to act
as collisionless components following the same profile as the dark matter. The profiles of the
different model components of Eq. (2.2) are described in Secs. 2.3 - 2.5.

– 3 –

Table 1. Parameters of the baryonic correction model including a short description and a reference
to the corresponding matter component and to the equation in the text. The status specifies whether
the parameter is kept free or is fixed to a given value in the model.

Name Comp. Description Equation Status

✓ej Gas Parameter specifying the maximum radius of gas ejection
relative to the virial radius.

(2.12) free

✓co Gas Parameter specifying the core radius of the gas profile rel-
ative to the virial radius.

(2.12) fixed

Mc Gas Parameter related to the slope of the gas profile: defines the
characteristic mass scale where the slope becomes shallower
than minus three.

(2.16) free

µ Gas Parameter related to the slope of the gas profile: defines
how fast the slope becomes shallower towards small halo
masses.

(2.16) free

A, M1 Star Parameters related to the stellar fractions: normalisation
and slope of the power-law describing the halo mass depen-
dence.

(2.11) fixed

⌘star Star Parameter specifying the total stellar fraction within a halo
(including central galaxy, satellites, and halo stars).

(2.11) free

⌘cga Star Parameter specifying the stellar fraction of the central
galaxy.

(2.11) free

Rh Star Parameter specifying the truncation radius of the central
galaxy.

(2.10) fixed

" DM Parameter specifying the truncation radius of the NFW
profile.

(2.6) fixed

a, n DM Parameters related to adiabatic relaxation of the dark mat-
ter (including galaxy satellites and halo stars).

(2.17) fixed

q, p 2-halo Standard parameters specifying the 2-halo term (excursion-
set modelling).

(2.9) fixed

collisionless component, i.e.,

Mclm(r) = fclmMnfw(r/⇣), ⇢clm(r) =
fclm

4⇡r2
d

dr
Mnfw(r/⇣). (2.19)

The final collisionless matter profile (⇢clm) is steeper at small radii and somewhat shallower
at large radii compared to the truncated NFW profile. This is due to both the presence of a
exponential stellar component in the centre and an extended gas component in the outskirts
of the halo.

2.6 Summary and example case

So far, we have defined a dark-matter-only (⇢dmo) and a dark-matter-baryon profile (⇢dmb)
which fully specify the baryonic correction model. Each of these two profiles contains a number

– 7 –

This value is in agreement with observations (see e.g. the characteristic break at ⇠ 0.1⇥ r200

visible in the observed X-ray profiles from XMM-Newton and Chandra [28, 29]). In Sec. 4.2, we
furthermore show that Eq. (2.15) leads to profiles in good agreement with stacked galaxy group
and cluster data from Ref. [30]. The effects of other values for ✓co on the cosmological density
field are discussed in Appendix B. Here we focus on the ejection radius instead (parametrised
by ✓ej), which affects the density profiles beyond the virial radius and is therefore highly
relevant for large-scale statistics of the universe.

Finally, the slope of the gas profile (�) consists of another free model parameter. The
slope is allowed to have both positive and negative values but is bound from above, i.e., �  3.
This means that the gas profile can be shallower than the NFW profile but never steeper.
From observations it is well known that � depends on halo mass, i.e., it is shallower for galaxy
groups compared to clusters [30]. We therefore assume an explicit halo mass dependence of
the form

�(M200) = 3�
✓

Mc

M200

◆
µ

(2.16)

with two free parameters Mc and µ. The function �(M200) approaches 3 at scales above
Mc and decreases towards smaller halo masses. In Sec. 4 we show that this functional form
provides a good match to data from X-ray observations.

2.5 Collisionless matter profile

The collisionless matter component (⇢clm) is dominated by dark matter but it also contains
all satellite galaxies and unbound stars within the halo. Based on results from gravity-only
simulations, we expect the collisionless matter component to assemble building a NFW profile
(as modelled in Sec. 2.2). However, the presence of a central galaxy and a gas component has
a gravitational effect on the collisionless matter which is commonly referred to as adiabatic
relaxation (i.e. adiabatic contraction or expansion).

Early work on adiabatic relaxation assumed shells of collisionless matter to either con-
tract or expand following angular momentum conservation, i.e., riMi = rfMf , where Mi and
Mf are the initial (dark-matter-only) and final (dark-matter-baryon) enclosed mass [31, 32].
More recently, it has been shown that the effect of relaxation is more accurately captured by
the relation

rf

ri
� 1 = a

✓
Mi

Mf

◆
n

� 1

�
, (2.17)

where a and n are free model parameters. Ref. [33] found best agreement with simulations
for the values of a = 0.3 and n = 2. Ref. [34], on the other hand, found best results for
a = 0.68 and n = 1. In the present work, we use the former as a default implementation for
collisionless contraction and expansion, but we have checked that both models give nearly
identical results in terms of clustering statistics (see also discussion in Appendix B). For the
mass terms Mi and Mf , we furthermore use

Mi ⌘ Mnfw(ri),

Mf ⌘ fclmMnfw(ri) +Mcga(rf ) +Mgas(rf ),
(2.18)

where fclm = ⌦dm/⌦m + fsga (with fsga = fstar � fcga). It is possible to iteratively solve
Eq. (2.17) for ⇣ ⌘ rf/ri thereby obtaining the updated mass and density profiles of the
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2.3 Stellar profile

We now consider the components of the total dark-matter-baryon profile (⇢dmb) defined by
Eq. (2.2). The density profile of the bright galaxy in the halo centre can be described by a
power-law profile with exponential cutoff, i.e.

⇢cga(r) =
fcgaMtot

4⇡3/2Rh

1

r2
exp

"
�
✓

r

2Rh

◆2
#
, Rh = 0.015 r200, (2.10)

where Rh is the stellar half-light radius [see e.g. 1, 17, 26]. Next to the central galaxy,
satellite galaxies and the stellar halo emitting the intra-cluster light also contribute to the
total stellar budget of a given halo. Since satellite galaxies and the stellar halo are collisionless
components, they are expected to behave in the same way as the dark matter component,
forming a NFW profile (which is, however, allowed to contract and expand under the influence
of the central galaxy and the gas profile, see Sec. 2.5).

The total abundance of stars within a halo is given by fstar ⌘ fcga + fsga, where fcga

refers to the stars of the central galaxy and fsga to the satellite population including the
stellar halo. The stellar fractions can be parametrised as follows:

fstar(M200) = A

✓
M1

M200

◆
⌘star

, fcga(M200) = A

✓
M1

M200

◆
⌘cga

, (2.11)

with A = 0.09, M1 = 2.5 ⇥ 1011 M�/h, and with the consistency relation ⌘star < ⌘cga, that
guarantees fstar to be larger than fcga for all relevant scales. The functional form of Eq. (2.11)
corresponds to a simplified version of the fit provided by Moster et al. [27]. In Sec. 4 we will
show that these parametric functions provide a good match to results from the literature
based on abundance matching.

2.4 Gas profile

The gas profile is parametrised by the following function

⇢gas(r) =
⇢gas,0

(1 + u)�(1 + v2)(7��)/2
, (2.12)

where u ⌘ r/rco and v ⌘ r/rej. The profile is characterised by a central core (with core
radius rco) followed by a power-law decrease (of slope �) and a truncation at the maximum
gas ejection radius (rej). Beyond the gas ejection radius, the gas density is forced to decrease
at the same rate as the truncated NFW profile (see Eq. 2.6). The normalisation parameter
(⇢gas,0) is given by

⇢gas,0 = fgasMtot


4⇡

Z 1

0
dr

r
2

(1 + u)�(1 + v2)(7��)/2

��1

(2.13)

where fgas ⌘ ⌦b/⌦m � fstar is the universal gas fraction and Mtot is the total halo mass (see
Eq. 2.4). The two characteristic radii of Eq. (2.12) are defined as follows:

rco ⌘ ✓cor200, rej ⌘ ✓ejr200, (2.14)

where ✓co and ✓ej are free model parameters that are constrained to be within the bounds
✓co < 1 and ✓ej > 1 for consistency reasons. To further simplify the analysis of the present
study, we fix the core parameter to

✓co = 0.1 . (2.15)
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v=r/rej,  
rej= θeq r200  



Born approximation 

Gouin et al.: Raytracing through the Horizon-AGN lightcone

Therefore, starting from pixelised maps of the deflection
field ↵1/2(i, j) in a thin slice of the lightcone, one can easily de-
rive �1/2(i, j) and (i, j) with finite di↵erences or Fast Fourier
Transforms (FFTs), even if ↵ is only known on a finite aperture,
without periodic boundary conditions. Conversely, starting from
a convergence map (i, j), it is impossible to integrate (3) with
FFTs to get ↵ (and then di↵erentiate again to get �) without in-
troducing edge e↵ects, if periodic boundary conditions are not
satisfied.

Additionally, we also introduce the scalar magnification µ
which is the inverse determinant of the magnification tensor ai, j

of Eq. (6).

3.2. Propagation of rays in a continuous lumpy Universe

On cosmological scales, light rays cross many over/under-dense
extended regions at di↵erent locations. Therefore, the thin lens
approximation does not hold. The transverse deflection induced
by an infinitely thin lens plane is still given by the above equa-
tions but one needs to fully integrate the trajectory of rays along
their path. Therefore, for a given source plane at comoving dis-
tance �s, the source plane position of a ray, initially observed at
position ✓ is given by the continuous implicit (Voltera) integral
equation (Jain & Seljak 1997):

�(✓, �s) = ✓ �
2
c2

Z �s

0
d�
�s � �
�s �

r�� (�(✓, �), �) . (10)

To first order, one can evaluate the gravitational potential
along an unperturbed path, so that:

�(✓, �s) = ✓ �
2
c2

Z �s

0
d�
�s � �
�s �

r✓� (✓, �) . (11)

This is known as the Born approximation, which is common in
many di↵usion problems of physics. An interesting property of
the Born Approximation is that the relation between � and ↵ can
be reduced to an e↵ective thin lens identical to (1) allowing the
definition of an e↵ective convergence, which is the divergence
of the e↵ective (curl-free) deflection field: 2e↵ = r.↵e↵ .

When the approximation does not hold, the relation between
� and ↵ can no longer be reduced to an e↵ective potential and
some curl-component may be generated, implying that the mag-
nification tensor is no longer symmetric but requires the addition
of a rotation term and so-called B-modes in the shear field. In
this more general framework, the magnification tensor should be
rewritten

ai j(✓) =
 

1 �  � �1 ��2 � !
��2 + ! 1 �  + �1

!
. (12)

with the following definitions of the new lensing rotation term !
(and revised �2)

�2 =
1
2

(↵1,2 + ↵2,1) , (13)

! =
1
2

(↵1,2 � ↵2,1) . (14)

The image plane positions where ! , 0 are closely related to the
lines of sight along which some substantial lens-lens coupling
may have occurred.

3.3. The multiple lens planes approximation

The numerical transcription of equation (10) in the Horizon-
AGN past line-cone requires the slicing of the latter into a se-
ries of parallel transverse planes, which could simply be the
22,000 slabs dumped by RAMSES at runtime every coarse time
step. These are too numerous and can safely be stacked into
thicker planes by packing together 40 consecutive slabs1. Here
500 slices of varying comoving thickness are produced all the
way to redshift z = 7 to compute either the deflection field or the
projected surface mass density as described below.

The discrete version of the equation of ray propagation (10)
for a fiducial source plane corresponding to the distance of the
plane j + 1 reads:

� j+1 = ✓ �
jX

i=1

Di; j+1

Dj+1
↵i(�i) , (15)

where ↵i is the deflection field in the lens plane i, Dj+1 is the
angular diameter distance between the observer and the plane
j + 1, and Di; j+1 the angular diameter distance between planes i

and j + 1. Therefore, as sketched in Fig. 3, rays are recursively
deflected one plane after the other, starting from unperturbed po-
sitions on a regular grid ✓ ⌘ �1.

The practical implementation of the recursion in equa-
tion (15) is computationally cumbersome and demanding in
terms of memory because the computation of the source plane
positions � j+1 requires holding all the j previously computed
source plane positions. Instead, this paper follows the approach
of Hilbert et al. (2009), who showed that equation (15) can be
rewritten as a recursion over only three consecutive planes2

� j+1 =

 
1 � Dj

Dj+1

Dj�1; j+1

Dj�1; j

!
� j�1+

Dj

Dj+1

Dj�1; j+1

Dj�1; j

� j�Dj; j+1

Dj

↵ j(� j) .

(16)

Besides this thorough propagation of light rays ,and in order
to quantify the impact of lens-lens coupling on lensing statistics,
source plane positions and associated quantities (convergence ,
shear �, rotation !) are additionally computed using the Born
approximation, following the discrete version of equation (11):

� j+1 = ✓ �
jX

i=1

Di; j+1

Dj+1
↵i(✓) (17)

The deflection maps in each lens plane are computed on a
very fine grid of pixels of constant angular size. In order to pre-
serve the ⇠ 1 kpc spatial resolution allowed by the simulation at
high redshift, 36, 000 ⇥ 36, 000 deflection maps are built in the
narrow 1 deg lightcone. The deflection maps in the low redshift
2.25 sq deg wide cone reaching z = 1 are computed on a coarser
20, 000 ⇥ 20, 000 pixels grid since the actual physical resolution
of the simulation at low redshift does justify the 0.1 arcsec res-
olution of the narrow 1 sq deg field-of-view. Even though the
image plane positions ✓ = �1 are placed on the regular pixel
grid, the deflections they experience must be interpolated in be-
tween the nodes of the regular deflection map as they progress
backward to a given source plane. This is done with a simple
bilinear interpolation scheme.
1 This number was chosen as a tradeo↵ between the typical number
of CPU cores in the servers used to perform the calculations and the
preservation of the line-of-sight native sampling of lightcone.
2 This recursion requires the introduction of an artificial �0 ⌘ �1 = ✓
slice in the initial setup.
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Implicit equation for the source plane angular coordinates: 
Integrates deflections along perturbed light rays 

Born Approximation: Integrates deflections along unperturbed light rays 


