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With the advent of a new generation of wide field cosmological surveys
aiming at characterizing the mass and energy content of the universe, it
becomes important to develop tools for predicting and computing cosmic
field statistical properties, such as cosmic density spectra or bispectra
beyond the linear regime. To achieve such an objective, besides N-body
simulations, one can rely on Perturbation Theory techniques that allow to
approach such quantities in a controlled way. Furthermore those methods
could in principle be exploited for a variety of cosmological models that
include non-standard effects such as massive neutrinos or modified gravity
models.

In this context, this workshop aims at gathering active researchers in the
development of efficient analytical methods for the computation of the
statistical properties of the large-scale structure of the Universe. It will
provide the opportunity for participants to present and discuss the merits
and scopes of the different Perturbation Theory approaches that have been
put forward in recent years.

Main topics will include

« hardcore methods of perturbation theory

« application to redshift-space distortions

« biasing mechanisms and properties of halos

« construction of modified gravity &mp; dark energy models

« impact of massive neutrinos on the development of large-scale structure
« computations of covariances

Eminent scientists in the field will animate the school.

These include:

Ph. Brax (IPhT Saclay, FR), V. Desjacques (Genéve, CH), M. Peloso (U.
Minesota, US), M. Pietroni (INFN Padua, IT), D. Pogosian (U. Alberta Edmonton,
CA), L. Senatore (CERN and U. Standford, US), R. Scoccimarro (NYU New York,
US), E. Sefusatti (ICTP, IT) and A. Taruya (RESCEU Tokyo, JP).

The scientific program will gradually be established, based on the proposals
of accepted contributions
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Moving from « naked »
correlation functions to
« dressed » or
regularised correlation
functions

e.g. clipped density
field, or peaks, etc.




Building dressed | |
correlation functions o ras

(p(x1)p(x2)) = 1+ &(|21 — 2])

(o (1) po()) = (po(@1)){po(22)) |1+ E(lr — al)

= {(pol@)(pola2)) {1+ bo, bo, &(Jwx — wal)

This form assumes that the

« dressed » density is defined locally
(like the local density in a spherical
region, from higher order derivative,
etc.) and that the scale at which it is

defined is much smaller than the
separation.

Perturbatively, it collects
contributions coming from higher
correlation function in the squeezed
limit.




Building dressed
correlation functions

If one knows how to compute the
dressed density, then the bias factor
is given by the linear response of the
dressed density with a large-scale
variation.

Are there quantities that are better
suited for such calculations, taking
into account non-linear evolution?

The new pot = the large deviation
principle.
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Large-deviation theory, one step beyond the
central limit theorem.

It adresses the question: what is the most likely way
for an unlikely event to happen?

Can serve as a computational method and/or guideline
for quantities of interest



Basics of theory of large deviation functions

Review paper by Hugo Touchette, ‘09
One exemple : tossing coins and taking the average number of heads
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Put a threshold at a fixed position

Central limit theorem : I (x) = 2(z — 0.5)?

Exactresult:  I(x) = xlog[x] + (1 — z) log[l — z] + log|[2]

rate function, I(x)

The cumulant generating function : @ (A) = log (€>‘/2 + 1/2)

Cramér’s Theorem : both are Legendre transform of one-another




Key theorems: from rate function to scaled cumulant generating
functions

The Contraction Principle: the rate function of an unlikely event is the
rate function of the most likely configuration for it to happen.

For a mapping © — y we have, I(y) = igiy](x)
that is the rate function for y is the smallest rate function (the most
probable) of the values (configurations) that lead to y.

The Gdrtner-Ellis Theorem (Cramér’s Theorem for IID): the rate function is the
Legendre-Fenchel transform of the (scaled) cumulant generating function

I(p) = Slip[kp — (M)

Under some regularity conditions, this relation can be inverted in

p(A) = Sl{l}p[)\p —I(p)]

The scaled cumulant > 2 22 A3
E ( >c> —ATS
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Large-Deviation Principle in the context
of large-scale structure cosmology

Discrete of continuous sets of
Gaussian variables obey the
Large Deviation Principle: their
rate function is a simple
quadratic form.

One needs a mapping... (a priori
non-linear and non-local)



An explicit large-deviation P. Reimberg, FB, I 5
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The spherical collapse: the solution for specific
initial conditions (with adiab. modes)

The radius d*R - GM(< R)

evolution d2 R2

The exact non-linear
mapping for spherically
symmetric initial profile
(for growing mode setting)

PnL(<n)—1

Note that this mapping is independent on the small scale physics (with
baryons, shell crossings, etc.) ;

Is it good enough for spherically symmetric observables ? Not necessarily
(e.g. Zeldovich approximation, FB, Reimberg, in prep.)



There exists a mapping which maps _ ‘
the initial radii into the nonlinear ones P. Reimberg, FB,"1 5

5(9) = {(89))
9 = 0L7VP(sliN0))

The scaled cumulant generating
function of any functional of the non-
linear density profile is then given by,

@A) = sup |4 p{E9)} — 18,0, .- .., 8in(6y))]
52%(0)

505 (9 does not have to be local, linear or defined from a
P <( )} discrete number of shells.



Consequences in the context of LSS
cosmology are at least 2 folds

.’.

= you do not need to impose /() to |
be small everywhere, only the o ’
variance has to be small;
- you have a possible working
procedure provided you can identify
the most likely initial configuration
and its probability (rate function).

Such an identification can be
done for configurations with
enough symmetries: in practice
with spherical (or cylindrical)
symmetry.




Standard result: the cumulants of the top-hat smoothed density

scaled cumulant GF = {pP), ( >p )2 A3
, )\: hm c = A+ —+ 55— +...
is Legendre T. of rate oM pz::l p! %) 2 7 3l
function:

Average of (combination of) tree order expression of
the p-point correlation functions in spherical cells.
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1-cell density

cumulants (FB '94)
it has a non trivial dependence on the wave

vectors through the functions F3 and F2




Application 1: 1-cell PDF and stats .

FB Pichon, Codis 'l 3

The inverse Laplace transform, P(p1) = / 2—75 exp(—A1p1 + ¢(A1))
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Computation of the 1-cell density PDF, LDP appliedto ;t = log ,5

Uhlemann, Codis, FB, Pichon, Reimberg '1 5
The general expression of the PDF
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The 2-cell probability distribution function

FB, Pichon, Codis 'l 3
Uhlemann, Codis, FB, Pichon, Reimberg '1 5

Choice of variables

pr = log (r’p2 + p1) |
pz = log (r’pa — p1) |

Saddle point expression

exp [—VR, R, (p1, P2)]
27

PRlaRQ (161’ ﬁ2) =

Log1o[P(p.s)]




From cumulant to PDFs FB, Pichon, Codis 'l 5

2 —cell PDF
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It opens the way to build
constrained PDFs

PO

Log P(s)

PNboYY (5) - P (s)
P(s)

s=slope

Figure 11. Top panel: PDF of the slope, of the slope when the
inner density is below one and of the slope when the inner den-
sity is above one. Error bars represent the error on the mean
as measured in our simulation, red lines represent the numerical
integration while blue lines are the log-mass saddle approxima-
tion given by equation (30). The agreement is very good for the
whole range of density and slope probed by the simulation. Bot-
tom panel: residuals of measured slope PDFs compared to the
log-mass saddle approximation corresponding to the blue lines in
the top panel.



A realistic Mass-aperture statistics
P. Reimberg, FB, 1 7
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Towards a complete theory of cell density statistics...
FB *99, FB, Pichon, Codis, ‘I 5

Joint PDFs read in the large-
separation limit (no finite separation

effects)

P{pr}, {pr}ire) =
PP EAr}) [1 4 &E(re)b({pr})o({ Ak }))]

Figure 1. The configuration of spherical cells considered in this
paper which is made of multiple sets of concentric spheres sepa-
rated by distances ry;. Their respective density, p1 i, corresponds
to a set of n spheres of same radii Ry; = R;.

Correlation of measured density probabilities in different locations

(P(pi)P(53) ) = P(p:)P(ps)(1 + Ebiby)



Results for the bias for the
density and for the slope.

Consistency relations
/0 dp b(p) P(p)

/ T dp pb(p) P(p) = 1

I
-

For the slope




A regime of large-deviation functions can be identified in LSS
cosmology.

- Observables can be related to joint PDFs of the density in concentric
cells but also to the cumulant generating function.

Perspectives - what are the domains of application ?:

- These calculations can be applied to 3D and projected mass maps,

and to joint density of multiple tracers;
- biasing of over-dense/under-dense regions can also be computed =

statistical properties of clipped regions;
- it can be applied to some non-linear transforms of the density field;

- other configuration/geometries ?



