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Moving from « naked » 
correlation functions to 

« dressed » or 
regularised correlation 

functions
h⇢(x1)⇢(x2)i

h⇢̂✓(x1)⇢̂✓(x2)i

e.g. clipped density 
field, or peaks, etc.



h⇢̂✓(x1)⇢̂✓(x2)i = h⇢̂✓(x1)ih⇢̂✓(x2)i
h
1 + ⇠̂(|x1 � x2|)

i

= h⇢̂✓(x1)ih⇢̂✓(x2)i
h
1 + b̂✓1 b̂✓2 ⇠(|x1 � x2|)

i

h⇢(x1)⇢(x2)i = 1 + ⇠(|x1 � x2|)

Building dressed 
correlation functions

This form assumes that the 
« dressed » density is defined locally 
(like the local density in a spherical 
region, from higher order derivative, 
etc.) and that the scale at which it is 
defined is much smaller than the 
separation.

Perturbatively, it collects 
contributions coming from higher 
correlation function in the squeezed 
limit.



Building dressed 
correlation functions

If one knows how to compute the 
dressed density, then the bias factor 
is given by the linear response of the 
dressed density with a large-scale 
variation. 

Are there quantities that are better 
suited for such calculations, taking 
into account non-linear evolution?

The new pot = the large deviation 
principle. 



Large-deviation theory, one step beyond the 
central limit theorem.

It	adresses	the	ques,on:	what	is	the	most	likely	way	
for	an	unlikely	event	to	happen?	

Can	serve	as	a	computa,onal	method	and/or	guideline	
for	quan,,es	of	interest
.



Basics of theory of large deviation functions
One exemple : tossing coins and taking the average number of heads

Put a threshold at a fixed position

In[1186]:= Prob@n_, p_D = Binomial@n, pD ê 2^n

Out[1186]= 2-n Binomial@n, pD

In[1244]:= CProb@n_, x_D := Sum@Prob@n, pD êê N, 8p, Floor@x nD, n<D

In[1248]:= CProb@100, .4D

Out[1248]= 0.9824

TStyle = 8FontFamily Ø "Times", FontSize Ø 12, FontWeight -> "Bold"<

In[1293]:= 8Table@8n, CProb@n, .5D<, 8n, 2, 250<D,
Table@8n, CProb@n, .6D<, 8n, 2, 250<D, Table@8n, CProb@n, .7D<, 8n, 2, 250<D,
Table@8n, CProb@n, .8D<, 8n, 2, 250<D, Table@8n, CProb@n, .9D<, 8n, 2, 250<D< êê

ListLogPlot@Ò, Joined Ø True, Frame Ø True, PlotRange Ø 8.0000000001, 1<,
FrameLabel Ø 8"n", "PnH>xL"<, LabelStyle Ø TStyleD &

Out[1293]=
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In[1239]:= RandomInteger@BinomialDistribution@100, 0.5D, 100 000D êê
Histogram@Ò, 81<, Frame Ø True, PlotRange Ø 880, 100<, All<, Axes Ø FalseD &

Out[1239]=
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In[1269]:= ftheo@x_D = x Log@xD + H1 - xL Log@1 - xD + Log@2D

Out[1269]= Log@2D + H1 - xL Log@1 - xD + x Log@xD

In[1276]:= Table@8x, ftheo@xD<, 8x, .5, .8, .1<D êê ListPlot@Ò, Frame - TrueD &

Out[1276]= ListPlot@880.5, 0.<, 80.6, 0.0201355<, 80.7, 0.0822829<, 80.8, 0.192745<<, Frame - TrueD

In[1289]:= NApprox@x_D = Series@ftheo@xD, 8x, 1 ê 2, 2<D êê Normal

Out[1289]= 2 -
1

2
+ x

2

x =
1

n

X

n

tn

Review paper by Hugo Touchette, ‘09

Pn(> x) ⇣ exp(�nI(x))

In[73]:= RandomInteger@BinomialDistribution@100, 0.5D, 100 000D êê
Histogram@Ò, 81<, Frame Ø True, PlotRange Ø 880, 100<, All<, Axes Ø FalseD &

Out[73]=
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In[74]:= ftheo@x_D = x Log@xD + H1 - xL Log@1 - xD + Log@2D

Out[74]= Log@2D + H1 - xL Log@1 - xD + x Log@xD

In[75]:= Table@8x, ftheo@xD<, 8x, .5, .8, .1<D êê ListPlot@Ò, Frame - TrueD &

Out[75]= ListPlot@880.5, 0.<, 80.6, 0.0201355<, 80.7, 0.0822829<, 80.8, 0.192745<<, Frame - TrueD

In[76]:= NApprox@x_D = Series@ftheo@xD, 8x, 1 ê 2, 2<D êê Normal

Out[76]= 2 -
1

2
+ x

2

In[78]:= Show@8Table@8x, ftheo@xD<, 8x, .5, .9, .1<D êê ListPlot@Ò, Frame -> True,
LabelStyle Ø TStyle, FrameLabel Ø 8"x", "rate function, IHxL"<,
PlotStyle Ø Directive@PointSize@LargeD, Darker@RedDDD &<,

Plot@8NApprox@xD, ftheo@xD<, 8x, -0.1, 1.1<, Frame Ø True, PlotStyle Ø ThickDD

Out[78]=
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2   Illustrations.nb

'(�) = log
�
e�/2 + 1/2

�

I(x) = x log[x] + (1� x) log[1� x] + log[2]

Central limit theorem : I(x) = 2(x� 0.5)2

Exact result :

The cumulant generating function : 

Cramér’s Theorem : both are Legendre transform of one-another

In[76]:= p150 = RandomInteger@BinomialDistribution@150, 0.5D, 100 000D ê 150 êê
Histogram@Ò, 81 ê 150.<, Frame Ø True, PlotRange Ø 880, 1<, All<,

Axes Ø False, LabelStyle Ø TStyle, ChartStyle Ø 8Opacity@.5D<D &

Out[76]=
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In[81]:= p30 = RandomInteger@BinomialDistribution@30, 0.5D, 20 000D ê 30 êê
Histogram@Ò, 81 ê 30<, Frame Ø True, PlotRange Ø 880, 1<, All<,

Axes Ø False, LabelStyle Ø TStyle, ChartStyle Ø 8Yellow<D &

Out[81]=
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In[82]:= Show@p30, p150D

Out[82]=
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ftheo@x_D = x Log@xD + H1 - xL Log@1 - xD + Log@2D

Log@2D + H1 - xL Log@1 - xD + x Log@xD

Table@8x, ftheo@xD<, 8x, .5, .8, .1<D êê ListPlot@Ò, Frame - TrueD &

ListPlot@880.5, 0.<, 80.6, 0.0201355<, 80.7, 0.0822829<, 80.8, 0.192745<<, Frame - TrueD

NApprox@x_D = Series@ftheo@xD, 8x, 1 ê 2, 2<D êê Normal
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Key theorems: from rate function to scaled cumulant generating 
functions

I(⇢) = sup
�
[�⇢� '(�)]

The Gärtner-Ellis Theorem (Cramér’s Theorem for IID): the rate function is the 
Legendre-Fenchel transform of the (scaled) cumulant generating function 

'(�) = sup
⇢
[�⇢� I(⇢)]

Under some regularity conditions, this relation can be inverted in

The Contraction Principle: the rate function of an unlikely event is the 
rate function of the most likely configuration for it to happen. 

For a mapping               we have ,x ! y
that is the rate function for y is the smallest rate function (the most 
probable) of the values (configurations) that lead to y.

I(y) = inf
x, x!y

I(x)

The scaled cumulant 
generating function:

'(�) = lim
h⇢2ic!0

h⇢2ic
1X

p=1

h⇢pic
p!

✓
�

h⇢2ic

◆p

= �+
�2

2
+ S3

�3

3!
+ . . .



Large-Deviation Principle in the context 
of large-scale structure cosmology 

Discrete of continuous sets of 
Gaussian variables obey the 
Large Deviation Principle: their 
rate function is a simple 
quadratic form.

One needs a mapping… (a priori 
non-linear and non-local)



An explicit large-deviation 
regime 

If one restricts the ensemble of 
realisations to spherically symmetric 
configurations, one can define a set of 
random variables - the densities in 
concentric shells - for which we know 
the rate function and the mapping into 
their nonlinear values.

P. Reimberg, FB, ‘15

The collection {δlin(θi)}1≤i≤N of correlated gaussian 
random variables obeys the LDP with rate function: 

4

define �lin
<

(✓) as in Eq. (7), but using ⌧2D in Eq. (3). We

want to compute the elements ⌃ij := h�lin
<

(✓i)�lin<
(✓j)i,

1  i, j  N of the covariance matrix ⌃ for this gaussian
field. On small-angle approximation one obtains [28]:

⌃ij =

Z 1

0

dk?k?
2⇡

P (k?)W (D0✓ik?)W (D0✓jk?) (8)

where

W (x) =
2J1(x)

x
(9)

is the Fourier transform of the top-hat filter in two di-
mensions. We normalize D+ to be unity at current time.
We assume here P (k?) = Ak

n
?, �2  n  1.

As observed in appendix A, the collection
{�lin

<
(✓i)}1iN of correlated gaussian random vari-

ables obeys the LDP with rate function:

I(�lin
<

(✓1), . . . , �
lin
<

(✓N )) =
�
2(✓N )

2

X

ij

⌅ij �
lin
<

(✓i) �
lin
<

(✓j)

(10)
where ⌅ = ⌃�1, and �

2(✓N ) = ⌃NN . When we take the
limit �

2(✓N ) ! 0, the rate function determines the ex-
ponential decay rate for the probability density function
associated to the random variables.

C. The mapping between the initial configuration
and the final configuration

We assume now that the ⌧2D is a density fluctuation
produced by a gas of non-interacting particles obeying
continuity, Euler and Poisson equations with azimuthal
symmetry. If this dynamics can be solved, a map con-
necting linear and non-linear overdensities can be estab-
lished. If we consider matter contained in a cylindrical
region, Gauss theorem will provide us the relation of the
radii given initial and final density. For what concerns
this work, it is su�cient to know that the normalized
non-linear density can be approximated in terms of the
linear density as [28]:

⇣(⌧2D) =
1�

1� ⌧2D
⌫

�⌫ , ⌫ =

p
13� 1

2
. (11)

We can therefore construct a new family of random
variables to describe the convergence produced by the
non-linear evolution of ⌧2D:

�<(#i) = ⇣(�lin
<

(✓i))�1 #i = ✓i/⇣(�
lin
<

(✓i))
1/2

. (12)

Since we assume no shell-crossings, the angular scales
#i are related to the initial scales ✓i by the constraint
of mass conservation inside a given shell. The fam-
ily of random variables {�<(#i)}1iN is obtained from
{�lin

<
(#i)}1iN by the continuous function ⇣, and there-

fore new family of random variables also obeys the LDP
as a consequence of the contraction principle in Large
Deviations Theory (see appendix A).

D. The rate function of the final field configuration

The contraction principle states that the rate function
for the new family will be given by (see Eq. (A4)):

 (�<(#1), . . . , �<(#N )) = inf
�lin
<

I(�lin
<

(✓1), . . . , �
lin
<

(✓N )) ,

(13)
where inf�lin

<
stands for the infimum taken over the collec-

tion {�lin
<

(✓i)}(1iN) such that �<(#i) = ⇣(�lin
<

(✓i))� 1.
In the domain in which ⇣ is bounded we can perform the
inversion �

lin
<

(✓i) = ⇣
�1[1 + �<(#i)], that we may also

write as �lin
<

(�<(#i)). We can therefore write,

 (�<(#1), . . . , �<(#N )) =
�
2(#N )

2

⇥
X

ij

⌅ij�
lin
<

(�<(#i))�
lin
<

(�<(#j)) . (14)

Again ⌅ = ⌃�1, ⌃ being the matrix whose elements are
given in Eq. (8).
The Legendre-Fenchel transform of the rate function

is the scaled cumulant generating function (SCGF), from
which all the cumulants can, in principle, be derived (see
appendix A).

E. The single cell case

In order to summarize and illustrate the rate function,
SCGF, their relations and role on the derivation of ob-
servable quantities, we will consider the convergence fil-
tered at one given scale, i.e., we take N = 1 in (14). The
rate function in this case will be given by

 (�<(#)) =
�
2(#) (�lin

<
(�<(#)))

2

2�2(# ⇣1/2(�lin
<

(✓)))
. (15)

If P (k) / k
n, then �

2(x) / x
�(n+2) in 2D dynamics. We

observe from the graph of the function  (�<) shown in
Fig. 2 that this function is not globally convex. Indeed
there is a critical value �

c
<

where there is a change of
convexity. For �2  n  1, however, �c

<
> 0 indicating

that the rate function is convex in a neighborhood of the
origin.
When �

2 ! 0, the scaled cumulant generating function
is the Legendre-Fenchel transform of the rate function,
i.e,

'(�) = sup
�<

[� �< � (�<)] . (16)

The quantities ' and  are said to be convex conjugate,
and Eq. (16) is written simply as ' =  ⇤ in some refer-
ences. If  is globally convex, then  = '

⇤ =  ⇤⇤ (i.e.,
convex conjugation is involutive on the space of convex

where Ξ = Σ−1, and σ2(θN) = ΣNN. 

θ1
θ2
θ3
θ4



The spherical collapse: the solution for specific 
initial conditions (with adiab. modes)

in 3D where J3/2 is the Bessel function of the first kind of index 3/2. The calculation14 of (160)
makes indeed intervene only the second moment and its variation with the smoothing scale so
that Bernardeau (1994a),

h�3
Ric

h�2
Ri2 = 3⌫2 +

d log �
2
R

d log R
(162)

where ⌫2 is directly related to F2 as its angular average,

⌫2 =

Z 1

�1
dµ F2(k1,k2) (163)

(µ is the cos of the angle between k1 and k2). For an Einstein-de Sitter universe we have
3⌫2 = 34/7. Such relation between the spherical collapse dynamics and tree-order cumulant can
actually be generalized to all orders. This is this connexion that we will try to unveil in the
rest of this section. First we need to explore a bit more the specificities of the spherical collapse
solutions.

11.2 The spherical collapse

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0
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2.0

r

Ρ N
L
!"r"#

1

Figure 20: Example of evolution of a density profile with the spherical collapse. In blue we
give the linearly evolved profile (linear growing mode)), in red its nonlinear evolution. Given a
density contrast within a radius in the growing mode linear regime ⌧(< r) the subsequent shell
size and density it compasses are entirely determined by the spherical evolution. Example of
such evolutions are given by the blue and red circles.

The spherical collapse does not only give the time within which a spherically symmetric
perturbation collapses, it gives the explicit and exact solution of the nonlinear evolution of the
density field before shell crossing for a wide class of initial fields, those with initial spherical
perturbations. Moreover, the Gauss theorem ensures that the radius evolution of a shell in such
a geometry is entirely determined by the total mass it contains. So let us consider a density
contrast ⌧(< r) within the radius r. Let us call R(⌘) the radius of that same shell during its
nonlinear evolution and ⇢(< R, ⌘) the total density it contains. At an arbitrarily early time
the amount of matter encompassed within such a radius is simply 4⇡/3r

3
⇢(⌘0) and by matter

conservation we have
⇢(< R, ⌘)R3(⌘) = ⇢(⌘0)r3

. (164)

14It is based on the exploitation of summation theorem enjoyed by the Bessel functions, relation 8.530 of
Gradshteyn and Ryzhik (1965).
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The exact non-linear 
mapping for spherically 
symmetric initial profile
(for growing mode setting)

The radius 
evolution

The time evolution of R can be solved in principle. It obeys the equation of motion

d2
R

dt2
= �GM(< R)

R2
(165)

which is nothing but the Friedman equation but for slightly di↵erent initial conditions. Matching
the time variables in the two cases leads to an explicit form of the spherical collapse that relates
the time dependent nonlinear density to the initial linear one when the latter is taken in the
linear growing mode (otherwise one would need two initial conditions). For an Einstein de
Sitter background this equation is actually independent on time once the initial density contrast
is expressed in terms of its linear evolution. Its explicit form depends on whether the initial
perturbation, evolved linearly, ⌧ is negative or positive. In the former case, we have,

⇢(⌧) =
9

2

(sinh ✓ � ✓)2

(cosh ✓ � 1)3
, ⌧ = �3

5


3

4
(sinh ✓ � ✓)

�2/3

(166)

and in the latter case,

⇢(⌧) =
9

2

(✓ � sin ✓)2

(1 � cos ✓)3
, ⌧ =

3

5


3

4
(✓ � sin ✓)

�2/3

. (167)

Another interesting peculiar case corresponds to the regime where the universe is almost empty
(⌦m ! 0 with ⌦⇤ = 0) for which the spherical collapse solution takes a surprisingly simple form,

⇢(⌧) =
1

(1 � 2⌧/3)3/2
. (168)

In the following we denote ⇣(⌧) the functional form that relates the linear density contrast to
the nonlinear density. It formally can expanded in,

⇣(⌧) =
X

p

⌫p
⌧

p

p!
. (169)

The a priori time dependent ⌫p parameters encode all the spherical collapse dynamics. And
for the very same reason the kernels Fn and Gn are almost independent on the background
evolution, the function ⇢, expressed as a function of the initial linear density contrast, is very
weakly dependent on the cosmological parameters. The form (168) first proposed in Bernardeau
(1992), is actually very accurate in practice15.

What it implies is that for any initial spherical profile, that can always be characterized by
the function ⌧(< r, ⌘0), the profile at time ⌘ is given by

⇢(< R, ⌘) = ⇣[e⌘�⌘0 ⌧(< r)], with ⇢(< R, ⌘) R
3 = ⇢(⌘0) r

3
. (170)

Such a mapping is illustrated on Fig. 20.
The explicit (or implicit) use of the spherical collapse solution is very common is cosmology

and to a large extent to predict, at least roughly, the number density of formed halos and their
correlation properties. There are many developments about this idea in textbooks (see also the
review paper of Cooray and Sheth 2002) but the purpose of these notes is not to cover this field.

The spherical collapse solution can also be related to the full ensemble of the density cumu-
lants. In the following we will make full use of the fact that this mapping provides an explicit
non linear solution of the density field for spherically symmetric initial conditions.

15Although it predicts a critical value for the density contrast, 1.5, which is slightly below the value for an
Einstein-de Sitter background, 1.69.
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Note that this mapping is independent on the small scale physics (with 
baryons, shell crossings, etc.) ;

Is it good enough for spherically symmetric observables ? Not necessarily 
(e.g. Zel’dovich approximation, FB, Reimberg, in prep.)



δ<(ϑ) = ζ(δlin
< (θ))

ϑ = θ ζ−1/D(δlin
< (θ))

There exists a mapping which maps 
the initial radii into the nonlinear ones 

φ(λ) = sup
δlin

< (θ)
[λ ̂ρ{δ<(ϑ)} − I(δlin(θ1), . . . , δlin(θN)]

The scaled cumulant generating 
function of any functional of the non-
linear density profile is then given by,  

̂ρ{δ<(ϑ)} does not have to be local, linear or defined from a 
discrete number of shells.

P. Reimberg, FB, ‘15



Such an identification can be 
done for configurations with 
enough symmetries: in practice 
with spherical (or cylindrical) 
symmetry.

Consequences in the context of LSS 
cosmology are at least 2 folds

- you do not need to impose        to 
be small everywhere, only the 
variance has to be small;

- you have a possible working 
procedure provided you can identify 
the most likely initial configuration 
and its probability (rate function).

�(x)



Standard result: the cumulants of the top-hat smoothed density 

scaled cumulant GF 
is Legendre T. of rate 
function:

'(�) = lim
h⇢2ic!0

h⇢2ic
1X

p=1

h⇢pic
p!

✓
�

h⇢2ic

◆p

= �+
�2

2
+ S3

�3

3!
+ . . .

Expression of 

Average of (combination of) tree order expression of 
the p-point correlation functions in spherical cells.

1-cell density 
cumulants (FB '94)

Sp = lim
h�2ic!0

h�pic
h�2ip�1

c
= tree order expr.

it has a non trivial dependence on the wave 
vectors through the functions F3 and F2

...

h�3i = 6

Z
dk1

(2⇡)3
P (k1)P (k2)

⇥F2(k1,k2)W (k1R)W (k2R)W (|k1 + k2|R)

/ h�2i2
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The inverse Laplace transform,

6

F. Recovering the PDF via inverse Laplace
transform

In the following we will exploit the expression for the
cumulant generating function to get the one-point and
joint density PDFs. To avoid confusion with the variables
⇢i that appear in the expression of  , we will use the
superscript ˆ to denote measurable densities, the PDF of
which we wish to compute.

In general, the joint density PDF, P = P(⇢̂1, . . . , ⇢̂n),
that gives the probability that the densities within a set
of n concentric cells of radii R1, . . . Rn are ⇢̂1 . . . ⇢̂n within
d⇢̂1 . . . d⇢̂n is given by

P =

Z +i1

�i1

d�1

2⇡i
. . .

d�n

2⇡i
exp(�

X

i

�i⇢̂i + '({�k)}).

where the integration in �i should be performed in the
complex plane so as to maximize convergence. This equa-
tion defines the inverse Laplace transform of the cumu-
lant generating function [57]. In the one-cell case, we
simply have

P(⇢̂1) =

Z +i1

�i1

d�1

2⇡i
exp(��1⇢̂1 + '(�1)) , (39)

i.e. the PDF is the inverse Laplace transform of the one-
variable moment generating function. This inversion is
known to be tricky, and to our knowledge there are no
known general full proof methods. One practical di�-
culty is that it generically relies on the analytic contin-
uation of the predicted cumulant generating function in
the complex plane. It is therefore crucial to have a good
knowledge of the analytic properties of '(�), which is
typically di�cult since '(�) is defined itself as the Leg-
endre transform of  (⇢). Only a limited set of  (⇢) yield
analytical '(�), which in turn can be inverse-Laplace-
transformed.

III. THE ONE-POINT PDF

Up to this point, the whole construction presented in
the previous section would be a mere mathematical trick
to compute explicit cumulants for top-hat window func-
tions sparing the pain of lengthy integrations on wave
modes. In this paper, we furthermore aim to use the
cumulant generating function computed in the uniform
limit ⌃ij ! 0 as an approximate form for the exact gen-
erating function when the ⌃ij are finite (but small). Note
that this is a non-trivial extension for which we have no
precise mathematical justifications. It assumes that the

global properties of '({�k}) – and in particular its ana-
lytical properties (which will be of crucial importance in
the following), should be meaningful for finite values of
�k, and not only in the vicinity of {�k = 0}. We now
conjecture without further proof that they correctly rep-
resent the cumulant generating function for finite values
of the variance.

1.0 10.05.02.0 20.03.0 30.01.5 15.07.0

!0.5
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0.5

Ρ

Ψ
'!
Ρ
"

FIG. 1: A graphical representation of the 1D stationary con-
dition � =  0[⇢]. There is a maximum value for � that corre-
sponds to a critical value for ⇢, ⇢c, defined in Eq. (40).

A. General formulae and asymptotic forms

The implementation of the quadrature in Eq. (39) has
been attempted in various papers [19, 26, 39], relying on
di↵erent hypotheses for '(�) [58]. We show on Fig. 1
a graphical representation of the stationary equation for
a power law model with index n = �1.5. The implicit
equation,  0[⇢] = �, has always a solution in the vicinity
of ⇢ ⇡ 0. Expanding this equation around this point
naturally gives the low order cumulants at an arbitrary
order.
Fig. 1 shows graphically that there is maximum value

for �, �c, that can be reached, so that the Legendre
Transform of  is not defined for � > �c. It corresponds
to a value ⇢ = ⇢c. At this location we have

0 =  00[⇢c] , �c =  
0[⇢c] . (40)

Note that at ⇢ = ⇢c,  is regular (in particular, the
corresponding singular behavior in '(�) is not related
any singularity of the spherical collapse dynamics). The
function '(�) can be expanded at this point. In short,
Eq. (24) can be inverted as a series near (⇢c,�c) (where
Eq. (40) holds), and integrated for '(�) using Eq. (28).
We give here a whole set of sub-leading terms that we
will take advantage of in the following,
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Figure 8. The bias modulation of the two-point sphere correlation function b(⇢)b(⇢0) = ⇠�(⇢, ⇢0; re)/⇠(re) for radii R = R0 = 14Mpc/h at redshift
z = 0.7 with the variance �µ=0.37 computed from the bias and constrained bias in an over- or underdense mass shell shown in Figure 6. Besides equi-bias
contours we show the line of zero bias b = 0 (green line) and unity bias b = ±1 (green dotted and dashed line) and sketch the configurations in the insets.
(upper panels) auto-correlations for densities with negative slope (positive peaks) (left), unconstrained densities in comparison to Horizon measurements
(mean as thick black lines, and mean ± error on the mean as thin black lines) (middle) and densities with positive slope (negative peaks) (right). (lower
panels) cross-correlations between densities with negative slope and unconstrained densities (left), densities with negative slope and densities with positive
slope (middle) or densities with positive slope and unconstrained densities (right). This modulation captures the expected bias clustering of peaks and voids
beyond the linear regime.

and upper left part). The point of zero bias, when compared to the
unconstrained case, is shifted into the quadrant that corresponds to
over- or underdensities if positive or negative peaks are involved
which also points to the interesting region of the plots where the
peak correlation differs from the average correlation. The lower
panel shows the cross-correlations between positive peaks (nega-
tive slopes), mass and negative peaks (positive slopes).

4 DARK MATTER CORRELATION ML ESTIMATOR

Building upon the recent work of Codis et al. (2016), we have
shown in this paper how to analytically model the statistics of the
cosmic density field in two locations of space via equation (3). This
model is surprisingly accurate as soon as the separation, re, is larger
than twice the smoothing length, R, and it only depends on two pa-
rameters: the variance of the density field measured at present-time,
�
2(R), and the value of the two-point dark matter correlation func-

tion, ⇠(re), at the separation. Therefore, following the ideas devel-
oped in Codis et al. (2016), one can build a maximum likelihood

estimator for ⇠(re) (and �(R)) which should perform better than
the sample estimator as time grows and non-gaussianities arise.

Let us focus here on the two-point density statistics at one
scale only for which we have (from equation (3))

P(⇢, ⇢0) = P(⇢)P(⇢0)(1 + ⇠(re)b(⇢)b(⇢
0)) , (31)

where ⇢
0 is the density at a distance re from ⇢. In equation (31),

the one-point PDFs only depend on the variance and are computed
using the public code LSSFast described in Codis et al. (2016)
and the bias b(⇢) is predicted via equation (17). This two-cell PDF
is shown on the left panel of Figure 9 where the effect of the spa-
tial clustering (dashed line) is compared to the case with no spatial
correlation (solid line).

4.1 Fiducial experiment from HR4

We now propose the following experiment: consider the 2523

spheres of radius R = 15Mpc/h of the HR4 simulation at z = 0.7
equally spaced on a grid of resolution �R = 12.5Mpc/h and
let us estimate the corresponding dark matter correlation func-

© 0000 RAS, MNRAS 000, 000–000
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Figure 8. Left panel: PDF of ⇢ measured (points with error bars) and predicted from a numerical integration in the complex plane for
the density PDF following equation (8) (red solid lines), a numerical integration of the log-density PDF according to equations (10) (blue
solid lines), a saddle-point approximation in the PDF of ⇢ as written in equation (9) (dashed red lines) or a saddle-point approximation
in the PDF of log ⇢ as mentioned in equation (11) (dashed blue lines). Four di↵erent redshifts are shown : z = 1.36, 0.97, 0.65 and 0
(from light to dark blue), for a filtering scale R = 10 Mpc/h. The density PDF obtained from the PDF of log ⇢ has been rescaled in order
to impose the normalisation, the mean and an e↵ective variance has been used that allows us to recover the density variance measured
in the simulation. Note that the solid and dashed blue lines are almost indistinguishable on this plot meaning that the saddle-point
approximation gives a very accurate (and analytical!) fit to the PDF when log ⇢ is taken as a variable. Right panel: residuals at two
di↵erent redshifts z =0 and 0.97 corresponding to �(R) = 0.78, and 0.48. The dashed blue and red error bars have been shifted along
the x-axis by respectively 0.02 and 0.04 for readability. Note that for densities below 0.5, the disagreement between prediction and
measurement is larger and therefore not displayed here.

4.1.2 Adjusting the variance

The key parameter in the prediction of the PDF is the value
of the variance at the pivot scale. In practice, a possible
strategy is to treat it as a free parameter to be adjusted to
the observations. But in principle, the variance �

2 can also
be predicted by linear theory

�
2(R) =

Z
d3

k

(2⇡)3
P

lin(k)W3D(kR)2 , (25)

where W3D(k) is the shape of the top-hat window function
in Fourier space,

W3D(k) = 3

r
⇡

2

J3/2(k)

k3/2
, (26)

and J3/2(k) the Bessel function of the first kind of order 3/2.
In Table 1 we show a comparison between the values

for the variance depending on whether it is predicted by
linear theory for a smoothing scale of R = 10 Mpc/h and a
spectral index ns = �1.576 or measured in the simulation
for either µ or ⇢. Note that, we also state the result from
converting �

2
⇢,sim to �

2
⇢,sim!µ using equation (20) together

with the tree-level perturbation theory result for the third
reduced cumulant of the log-density S

tree
3 [µ] = S

tree
3 [⇢]� 3.

Finally, in Fig. 9 we compare results obtained for the
PDF for the log density using the saddle-point approxima-
tion depending on whether the linear variance is used for µ
or the variance is measured from the simulation. Note that,
while the linear prediction for the variance makes the model
fully predictive without any free parameter, it systematically
higher (around 10-15% ) than the measured value, hence the
prediction for the PDF is correspondingly not as accurate.

R=10 Mpc/h �2
lin �2

µ,sim �2
⇢,sim �2

⇢,sim!µ

z=0.97 0.214 0.192 0.226 0.188
z=0.65 0.286 0.247 0.305 0.242
z=0.0 0.470 0.418 0.607 0.396

Table 1. Comparison of variances between linear theory �2
lin,

measurements in the simulation for the log-density �2
µ,sim and

density �2
⇢,sim and the mapping �2

⇢,sim!µ from equation (20).

Figure 9. Residuals for the measured PDF compared to two pre-
dictions for the log density using the measured �2

µ,sim (red) or the

linear result �2
lin (green) for two di↵erent redshifts as indicated.

The value of �2 used here are extracted from table 1. Note that
green error bars have been shifted along the x-axis by 0.03.
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Figure 8. Left panel: PDF of ⇢ measured (points with error bars) and predicted from a numerical integration in the complex plane for
the density PDF following equation (8) (red solid lines), a numerical integration of the log-density PDF according to equations (10) (blue
solid lines), a saddle-point approximation in the PDF of ⇢ as written in equation (9) (dashed red lines) or a saddle-point approximation
in the PDF of log ⇢ as mentioned in equation (11) (dashed blue lines). Four di↵erent redshifts are shown : z = 1.36, 0.97, 0.65 and 0
(from light to dark blue), for a filtering scale R = 10 Mpc/h. The density PDF obtained from the PDF of log ⇢ has been rescaled in order
to impose the normalisation, the mean and an e↵ective variance has been used that allows us to recover the density variance measured
in the simulation. Note that the solid and dashed blue lines are almost indistinguishable on this plot meaning that the saddle-point
approximation gives a very accurate (and analytical!) fit to the PDF when log ⇢ is taken as a variable. Right panel: residuals at two
di↵erent redshifts z =0 and 0.97 corresponding to �(R) = 0.78, and 0.48. The dashed blue and red error bars have been shifted along
the x-axis by respectively 0.02 and 0.04 for readability. Note that for densities below 0.5, the disagreement between prediction and
measurement is larger and therefore not displayed here.

4.1.2 Adjusting the variance

The key parameter in the prediction of the PDF is the value
of the variance at the pivot scale. In practice, a possible
strategy is to treat it as a free parameter to be adjusted to
the observations. But in principle, the variance �

2 can also
be predicted by linear theory

�
2(R) =

Z
d3

k

(2⇡)3
P

lin(k)W3D(kR)2 , (25)

where W3D(k) is the shape of the top-hat window function
in Fourier space,

W3D(k) = 3

r
⇡

2

J3/2(k)

k3/2
, (26)

and J3/2(k) the Bessel function of the first kind of order 3/2.
In Table 1 we show a comparison between the values

for the variance depending on whether it is predicted by
linear theory for a smoothing scale of R = 10 Mpc/h and a
spectral index ns = �1.576 or measured in the simulation
for either µ or ⇢. Note that, we also state the result from
converting �

2
⇢,sim to �

2
⇢,sim!µ using equation (20) together

with the tree-level perturbation theory result for the third
reduced cumulant of the log-density S

tree
3 [µ] = S

tree
3 [⇢]� 3.

Finally, in Fig. 9 we compare results obtained for the
PDF for the log density using the saddle-point approxima-
tion depending on whether the linear variance is used for µ
or the variance is measured from the simulation. Note that,
while the linear prediction for the variance makes the model
fully predictive without any free parameter, it systematically
higher (around 10-15% ) than the measured value, hence the
prediction for the PDF is correspondingly not as accurate.

R=10 Mpc/h �2
lin �2

µ,sim �2
⇢,sim �2

⇢,sim!µ

z=0.97 0.214 0.192 0.226 0.188
z=0.65 0.286 0.247 0.305 0.242
z=0.0 0.470 0.418 0.607 0.396

Table 1. Comparison of variances between linear theory �2
lin,

measurements in the simulation for the log-density �2
µ,sim and

density �2
⇢,sim and the mapping �2

⇢,sim!µ from equation (20).

Figure 9. Residuals for the measured PDF compared to two pre-
dictions for the log density using the measured �2

µ,sim (red) or the

linear result �2
lin (green) for two di↵erent redshifts as indicated.

The value of �2 used here are extracted from table 1. Note that
green error bars have been shifted along the x-axis by 0.03.
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it di�cult to perform the explicit integration in the com-
plex plane. In the low-density regime, the inverse Laplace
transform in equation (8) can in principle be computed via
a saddle-point approximation, taking advantage of the fact
that the variance is small, leading to the form

PR(⇢̂) =

r
 00

R[⇢̂]

2⇡
exp (� R[⇢̂]) , (9)

when the result is expressed in terms of the decay-rate func-
tion  R(⇢̂). When this formula is applicable, that is when
 00

R[⇢̂] > 0, it provides a very good approximation to the
exact numerical integration (Bernardeau, Pichon & Codis
2014). However, as mentioned before, it has been shown in
Bernardeau (1994) that typically there is a critical value for
⇢̂c at finite distance where  00

R[⇢̂c] = 0 above which the Leg-
endre transform of  R is not defined, which prevents the
practical use of equation (9). Although there exist alterna-
tive forms to the PDF based on the behaviour of the cu-
mulant generating function near its critical point, they are
only accurate in the very high density regime and do not
encompass the intermediate region around ⇢̂ ⇡ ⇢̂c.

The central point we make in this paper is that this
di�culty can be alleviated with an adequate change of vari-
able ⇢̂ ! µ such as the log of the density, µ = log ⇢̂. The
construction of the density PDF is then obtained with the
following steps:

PR,µ(µ)dµ =

Z +i1

�i1

d�
2⇡i

exp[��µ+ �R,µ(�)] , (10a)

PR(⇢̂)d⇢̂ = PR,µ(log(⇢̂))
d⇢̂
⇢̂

, (10b)

with the further simplification brought by the saddle-point
expression of the density PDF in equation (10), which even-
tually leads to

PR(⇢̂) =

r
 00

R[⇢̂] + 
0
R[⇢̂]/⇢̂

2⇡
exp (� R[⇢̂]) . (11)

It has to be noted that the two formulae, equations (9)
and (11), are based on two distinct assumptions when ex-
trapolated to finite values of �. Namely either �R,⇢̂(�) =
'R,⇢̂(��

2)/�2 or �R,µ(�) = 'R,µ(��
2)/�2. We will see more

precisely in the following that although the contraction prin-
ciple ensures that the scaled cumulant generating functions
are both independent of such assumptions – their limit is
left unchanged for � ! 0 – this is not the case when the
variance is finite. This is why one variable turns out to be a
better choice than the other in practice.

Let us first examine the critical behaviour of  R[⇢̂] and
 R[µ], respectively. The starting point is the quadratic form
(5) for  R(⌧) converted to a function of the final density ⇢̂

by inverting the spherical collapse relation to obtain ⌧(⇢̂).
For an EdS universe, the spherical collapse dynamics can be
written as

⇢̂(⌧) '
1

(1� ⌧/⌫)⌫
, ⌫ =

21
13

, (12)

where ⌫ = 21/13 is known to reproduce well the spherical
collapse dynamics in EdS Universe for the range of densities
of interest. For simplicity, we now assume for the variance a
power law initial power spectrum with index ns ⇡ �1.5

�
2(R) = �

2(Rp) (R/Rp)
�(ns+3)

, (13)

Figure 1. E↵ect of a logarithmic density-transformation ⇢̂(µ) on

the domain of definition of
q
 00

⇢̂ d⇢̂ set by the positivity condition

 00
⇢̂ +  0

⇢̂⇢̂
00(µ)/⇢̂0(µ)2 > 0. Results for the density µ = ⇢̂ (thin

lines) and the log-density µ = log ⇢̂ (thick lines) are displayed
for di↵erent initial spectral indices ns = �1.25,�1.5, · · · ,�3.25
(colored as indicated in the legend). This comparison shows that
the log-transform is able to avoid the criticality of the decay-rate
function  R for all densities over a wide range of indices typically
ns > �2.4. On the contrary, a critical point is met for all indices
when the variable is the density field itself.

where Rp is a pivot scale. In Section 4 this simplifying as-
sumption is amended to account for a running of the spectral
index. In that case, the variance is approximated by

�
2(R) =

2�2(Rp)
(R/Rp)n1+3 + (R/Rp)n2+3

, (14)

where n1 and n2 are chosen to reproduce the linear the-
ory index n(R) = �3 � d log(�(R))/d logR and running,
↵(R) = d log(n(R))/d logR at the pivot scale Rp. For a gen-
eralization to arbitrary initial power spectra see Section 5.2.

The functions  00
R[⇢̂] and  

00
R[µ]/⇢̂

2 =  00
R[⇢̂] +  

0
R[⇢̂]/⇢̂

entering the square root in respectively equation (9) and
equation (11) are shown in Fig. 1 for various values of the
power law index ns. It can easily be checked that for most
spectral indices of interest we always have  00

R[µ] > 0. Con-
versely, we recover the existence of a critical value ⇢̂c ' 2.36
pointed out in Bernardeau, Pichon & Codis (2014) for R[⇢̂].
One can see that the mapping ⇢̂ = expµ avoids the criti-
cality for all relevant densities and power spectrum indices
ns > �2.4.2

3 CUMULANT GENERATING FUNCTIONS

As stressed in the introduction, the application of the LDP
gives access to the SCGF for the cumulants defined in equa-
tion (1) for the variable of interest. This quantity is at the
heart of our constructions. It serves in particular as a model
for the actual cumulant generating function – which is an
observable on itself – as in equation (7). Such a function can
be measured, or can be used to build the density PDFs as
shown in the previous Section.

2 For smaller indices ns < �2.4 it is possible to iterate the loga-
rithmic mapping to prevent  R from becoming critical.
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Computation of the 1-cell density PDF, LDP applied to  

Large-deviation statistics of the log-density 5

3.1 Scaled cumulant generating functions

Let us re-express the SCGF in terms of the field cumulants,

'x̂(�) = lim
hx̂2i!0

1X

p=1

hx̂
p
ic

hx̂2i
p�1
c

�
p

p!
, (15)

for a given variable x̂. It involves naturally the reduced cu-
mulants Sp[x̂] defined as

Sp[x̂] =
hx̂

p
ic

hx̂2i
p�1
c

8p > 2 , (16)

but evaluated in their low-variance limit. Equation (7) con-
tains however non-trivial physical assumptions. From a PT
point of view, and for Gaussian initial conditions as assumed
here, the leading low-variance limit of Sp[x̂] are their so-
called tree order expression3,

lim
hx̂2i!0

Sp[x̂] = S
tree
p [x̂]. (17)

The strength of the LDP applied in this context is to pro-
vide means to compute all the tree order expression of the
reduced cumulant at once, for any variable such as ⇢̂ or µ.
Then the form (7) relies on the hypothesis that either Sp[⇢̂]
or Sp[µ] are independent of variance, depending on the cho-
sen variable. Finally, notice that, in the specific case of the
variable4 µ = log ⇢̂, there exists a simple way to compute
the moments of ⇢̂ from the cumulant generating function of
µ as

h⇢̂
p
i =

h⇢
p
i

h⇢ip
=

he
pµ
i

heµip
= exp[�µ(p)� p�µ(1)]. (18)

It is then easy to predict the moments of the density from
the SCGF. In particular, this allows to adjust the variance
for ⇢̂, once the variance for µ has been chosen because

�
2
⇢̂ =

h⇢
2
i

h⇢i2
� 1 = exp


'µ(2�

2
µ)� 2'µ(�

2
µ)

�2
µ

�
� 1 . (19)

3.2 Cumulants as observables

From a theoretical point of view, the LDP does not give
any indications about which physical assumption – whether
Sp[⇢̂] or Sp[µ] should be kept constant – is better. PT calcu-
lations pushed to one-loop order could provide some indica-
tions, but no such results are known today. Hence, for now
we must rely on results from numerical simulations. Those
are described in Appendix B (see also Bernardeau, Pichon &
Codis 2014). In Fig. 2, we show the numerical variations of
the reduced cumulants S3 and S4 for both ⇢̂ and µ = log ⇢̂
as a function of the variance for radii from R = 4 to 16
Mpc/h. We observe that the reduced cumulant for the log-
density Sp[µ] is smaller than that of the density Sp[⇢̂], but
also has a milder �-dependence. This suggests that extrap-
olating the zero variance result for the log-density to finite
variances is more adequate than doing so for the density
and also that the cumulants of the log-density Sp[µ] can be
better captured by perturbation theory than those of the
density Sp[⇢̂], as will be demonstrated in the following.

3 This comes from their diagrammatic representations that all
reduces to trees, see Bernardeau et al. (2002) for details.
4 Note that, µ = log ⇢̂ is used as shorthand notation for ⇢̂ =
expµ/ hexpµi with hµi = 0.

Figure 2. Measured reduced cumulants with error bars versus
the variance �2

⇢̂ for R in Mpc/h as labeled. The measurements
of S3[⇢̂] (top), S3[µ] (middle) and S4[µ] (bottom panel), respec-
tively, illustrate that the reduced cumulants of the log density
Sp[µ] are almost constant while those of the density Sp[⇢̂] clearly
change with the variance. In the top panel, the direct measure-
ment of S3[⇢̂] (lighter colour-shading) is shown to be compatible
with S3[⇢̂] obtained from S3/4[µ] according to formula (21).
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Figure 3. Third reduced cumulant S3[⇢̂] as a function of the
variance �2

⇢̂ obtained from the cumulant generating function us-
ing equation (18) (thick solid lines) and from the saddle-point
approximation of the PDF equation (11) (thin lines) for three
di↵erent radii R in Mpc/h in comparison to the tree-level PT
prediction for ⇢̂ (dashed) and µ = log ⇢̂ translated to ⇢̂ according
to equation (23) (dotted). Tree-level PT applied to µ = log ⇢̂ leads
to a linear �2-dependence of S3[⇢̂] for small but finite variances.
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it di�cult to perform the explicit integration in the com-
plex plane. In the low-density regime, the inverse Laplace
transform in equation (8) can in principle be computed via
a saddle-point approximation, taking advantage of the fact
that the variance is small, leading to the form

PR(⇢̂) =

r
 00

R[⇢̂]

2⇡
exp (� R[⇢̂]) , (9)

when the result is expressed in terms of the decay-rate func-
tion  R(⇢̂). When this formula is applicable, that is when
 00

R[⇢̂] > 0, it provides a very good approximation to the
exact numerical integration (Bernardeau, Pichon & Codis
2014). However, as mentioned before, it has been shown in
Bernardeau (1994) that typically there is a critical value for
⇢̂c at finite distance where  00

R[⇢̂c] = 0 above which the Leg-
endre transform of  R is not defined, which prevents the
practical use of equation (9). Although there exist alterna-
tive forms to the PDF based on the behaviour of the cu-
mulant generating function near its critical point, they are
only accurate in the very high density regime and do not
encompass the intermediate region around ⇢̂ ⇡ ⇢̂c.

The central point we make in this paper is that this
di�culty can be alleviated with an adequate change of vari-
able ⇢̂ ! µ such as the log of the density, µ = log ⇢̂. The
construction of the density PDF is then obtained with the
following steps:

PR,µ(µ)dµ =

Z +i1

�i1

d�
2⇡i

exp[��µ+ �R,µ(�)] , (10a)

PR(⇢̂)d⇢̂ = PR,µ(log(⇢̂))
d⇢̂
⇢̂

, (10b)

with the further simplification brought by the saddle-point
expression of the density PDF in equation (10), which even-
tually leads to

PR(⇢̂) =

r
 00

R[⇢̂] + 
0
R[⇢̂]/⇢̂

2⇡
exp (� R[⇢̂]) . (11)

It has to be noted that the two formulae, equations (9)
and (11), are based on two distinct assumptions when ex-
trapolated to finite values of �. Namely either �R,⇢̂(�) =
'R,⇢̂(��

2)/�2 or �R,µ(�) = 'R,µ(��
2)/�2. We will see more

precisely in the following that although the contraction prin-
ciple ensures that the scaled cumulant generating functions
are both independent of such assumptions – their limit is
left unchanged for � ! 0 – this is not the case when the
variance is finite. This is why one variable turns out to be a
better choice than the other in practice.

Let us first examine the critical behaviour of  R[⇢̂] and
 R[µ], respectively. The starting point is the quadratic form
(5) for  R(⌧) converted to a function of the final density ⇢̂

by inverting the spherical collapse relation to obtain ⌧(⇢̂).
For an EdS universe, the spherical collapse dynamics can be
written as

⇢̂(⌧) '
1

(1� ⌧/⌫)⌫
, ⌫ =

21
13

, (12)

where ⌫ = 21/13 is known to reproduce well the spherical
collapse dynamics in EdS Universe for the range of densities
of interest. For simplicity, we now assume for the variance a
power law initial power spectrum with index ns ⇡ �1.5

�
2(R) = �

2(Rp) (R/Rp)
�(ns+3)

, (13)

Figure 1. E↵ect of a logarithmic density-transformation ⇢̂(µ) on

the domain of definition of
q
 00

⇢̂ d⇢̂ set by the positivity condition

 00
⇢̂ +  0

⇢̂⇢̂
00(µ)/⇢̂0(µ)2 > 0. Results for the density µ = ⇢̂ (thin

lines) and the log-density µ = log ⇢̂ (thick lines) are displayed
for di↵erent initial spectral indices ns = �1.25,�1.5, · · · ,�3.25
(colored as indicated in the legend). This comparison shows that
the log-transform is able to avoid the criticality of the decay-rate
function  R for all densities over a wide range of indices typically
ns > �2.4. On the contrary, a critical point is met for all indices
when the variable is the density field itself.

where Rp is a pivot scale. In Section 4 this simplifying as-
sumption is amended to account for a running of the spectral
index. In that case, the variance is approximated by

�
2(R) =

2�2(Rp)
(R/Rp)n1+3 + (R/Rp)n2+3

, (14)

where n1 and n2 are chosen to reproduce the linear the-
ory index n(R) = �3 � d log(�(R))/d logR and running,
↵(R) = d log(n(R))/d logR at the pivot scale Rp. For a gen-
eralization to arbitrary initial power spectra see Section 5.2.

The functions  00
R[⇢̂] and  

00
R[µ]/⇢̂

2 =  00
R[⇢̂] +  

0
R[⇢̂]/⇢̂

entering the square root in respectively equation (9) and
equation (11) are shown in Fig. 1 for various values of the
power law index ns. It can easily be checked that for most
spectral indices of interest we always have  00

R[µ] > 0. Con-
versely, we recover the existence of a critical value ⇢̂c ' 2.36
pointed out in Bernardeau, Pichon & Codis (2014) for R[⇢̂].
One can see that the mapping ⇢̂ = expµ avoids the criti-
cality for all relevant densities and power spectrum indices
ns > �2.4.2

3 CUMULANT GENERATING FUNCTIONS

As stressed in the introduction, the application of the LDP
gives access to the SCGF for the cumulants defined in equa-
tion (1) for the variable of interest. This quantity is at the
heart of our constructions. It serves in particular as a model
for the actual cumulant generating function – which is an
observable on itself – as in equation (7). Such a function can
be measured, or can be used to build the density PDFs as
shown in the previous Section.

2 For smaller indices ns < �2.4 it is possible to iterate the loga-
rithmic mapping to prevent  R from becoming critical.
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Figure 10. PDF of the inner density ⇢ = ⇢̂1 and slope s = (⇢̂2 � ⇢̂1)R1/(R2 �R1) within cells of radii R1 = 10 and R2 = 11Mpc/h at
redshift z = 0.97. The right panel displays the log-mass saddle approximation given by equation (30) compared to the measured PDF
while the left panel shows the numerical integration (solid lines) and density saddle approximation (dashed lines) of the joint PDF.
Contours are displayed for LogP(⇢, s) = 0,�1/2,�1, . . . ,�3. The grey solid line is the no-shell crossing limit s > �10⇢(1� r3), the red
solid line is the critical line for the log-mass saddle approximation while the purple solid line is the critical line for the density saddle
approximation.

4.1.3 Large density tail of the PDF

Using the saddle-point approximation for the log density,
equation (11), we can straightforwardly obtain the large den-
sity tails of the PDF as

PR(⇢̂)
⇢̂�1
�!

(ns + 3)⌫

6
p

⇡�2
µ(R)

exp

"
�
⌫
2(⇢̂

1
⌫ � 1)2⇢̂

ns+3
3 � 2

⌫

2�2
µ(R)

#
⇢̂

ns�3
6 .

(27)

Equation (27) is surprisingly simple and general w.r.t.
the parameters of the theory, in contrast to the analyt-
ical asymptotic around the critical point ⇢̂c presented in
Bernardeau, Pichon & Codis (2014), equation (45). In par-
ticular, it shows explicitly how fitting the rare event tail of
the PDF allows us to estimate ⌫ and accordingly quantify
possible modifications of gravity.

4.2 The 2-cell log density PDF saddle

Let us now explore the two-cell PDF PR1,R2(⇢̂1, ⇢̂2) in the
saddle approximation limit; this is a straightforward gener-
alization of equation (9) (see Bernardeau, Codis & Pichon
2015, for the general expression of the 2-cells PDF)

PR1,R2(⇢̂1, ⇢̂2) =
exp [� R1,R2(⇢̂1, ⇢̂2)]

2⇡

s

det


@2 R1,R2

@⇢̂k@⇢̂l

�
.

(28)
If the densities {(⇢̂1, ⇢̂2)} are used as variables, the issue

of criticality for the Hessian

det


@
2 R1,R2

@⇢̂k@⇢̂l

�
(⇢̂1, ⇢̂2)c = 0

becomes more severe compared the one-cell case where the

saddle-point approximation broke down above a critical den-
sity. As demonstrated in the left panel of Fig. 10 there is a
roughly elliptical critical boundary {(⇢̂1, ⇢̂2)c} beyond which
the saddle-point method breaks down. Since the slope, given
by the di↵erence between the central and the overall density,
is much more restricted, this suggests to apply the logarith-
mic transform not to the densities individually but to their
di↵erence and sum.

A suitable and physically motivated choice for the
di↵erence is a mass-weighted one which ensures a well-
behaved logarithm as long as the no-shell crossing condition
R

3
2⇢̂2 � R

3
1⇢̂1 > 0 is satisfied. This suggest to perform the

following logarithmic transform of the sum and di↵erence of
mass

µ1 = log
�
r
3
⇢̂2 + ⇢̂1

�
, (29a)

µ2 = log
�
r
3
⇢̂2 � ⇢̂1

�
, (29b)

where the relative shell thickness is r = R2/R1 and the no-
shell crossing condition enforces µ2 to be real. The PDF
P(⇢̂1, ⇢̂2), or equivalently P(⇢, s) the PDF of the inner den-
sity ⇢ = ⇢̂1 and slope s = (⇢̂2 � ⇢̂1)/(r � 1), can then be
approximated via a saddle-point approximation by

PR1,R2(⇢̂1, ⇢̂2) =
exp [� R1,R2(⇢̂1, ⇢̂2)]

2⇡
(30)

⇥

s

det


@2 R1,R2

@µi@µj

� ����det

@µi

@⇢̂j

����� ,

which can explicitly be rewritten as

PR1,R2(⇢̂1, ⇢̂2) =
exp [� R1,R2(⇢̂1, ⇢̂2)]

2⇡

p
pR1,R2(⇢̂1, ⇢̂2) ,
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Figure 10. PDF of the inner density ⇢ = ⇢̂1 and slope s = (⇢̂2 � ⇢̂1)R1/(R2 �R1) within cells of radii R1 = 10 and R2 = 11Mpc/h at
redshift z = 0.97. The right panel displays the log-mass saddle approximation given by equation (30) compared to the measured PDF
while the left panel shows the numerical integration (solid lines) and density saddle approximation (dashed lines) of the joint PDF.
Contours are displayed for LogP(⇢, s) = 0,�1/2,�1, . . . ,�3. The grey solid line is the no-shell crossing limit s > �10⇢(1� r3), the red
solid line is the critical line for the log-mass saddle approximation while the purple solid line is the critical line for the density saddle
approximation.

4.1.3 Large density tail of the PDF

Using the saddle-point approximation for the log density,
equation (11), we can straightforwardly obtain the large den-
sity tails of the PDF as

PR(⇢̂)
⇢̂�1
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(ns + 3)⌫
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p
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µ(R)
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�
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2(⇢̂

1
⌫ � 1)2⇢̂

ns+3
3 � 2

⌫
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µ(R)

#
⇢̂

ns�3
6 .

(27)

Equation (27) is surprisingly simple and general w.r.t.
the parameters of the theory, in contrast to the analyt-
ical asymptotic around the critical point ⇢̂c presented in
Bernardeau, Pichon & Codis (2014), equation (45). In par-
ticular, it shows explicitly how fitting the rare event tail of
the PDF allows us to estimate ⌫ and accordingly quantify
possible modifications of gravity.

4.2 The 2-cell log density PDF saddle

Let us now explore the two-cell PDF PR1,R2(⇢̂1, ⇢̂2) in the
saddle approximation limit; this is a straightforward gener-
alization of equation (9) (see Bernardeau, Codis & Pichon
2015, for the general expression of the 2-cells PDF)

PR1,R2(⇢̂1, ⇢̂2) =
exp [� R1,R2(⇢̂1, ⇢̂2)]
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@2 R1,R2
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�
.

(28)
If the densities {(⇢̂1, ⇢̂2)} are used as variables, the issue

of criticality for the Hessian

det
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2 R1,R2

@⇢̂k@⇢̂l

�
(⇢̂1, ⇢̂2)c = 0

becomes more severe compared the one-cell case where the

saddle-point approximation broke down above a critical den-
sity. As demonstrated in the left panel of Fig. 10 there is a
roughly elliptical critical boundary {(⇢̂1, ⇢̂2)c} beyond which
the saddle-point method breaks down. Since the slope, given
by the di↵erence between the central and the overall density,
is much more restricted, this suggests to apply the logarith-
mic transform not to the densities individually but to their
di↵erence and sum.

A suitable and physically motivated choice for the
di↵erence is a mass-weighted one which ensures a well-
behaved logarithm as long as the no-shell crossing condition
R

3
2⇢̂2 � R

3
1⇢̂1 > 0 is satisfied. This suggest to perform the

following logarithmic transform of the sum and di↵erence of
mass

µ1 = log
�
r
3
⇢̂2 + ⇢̂1

�
, (29a)

µ2 = log
�
r
3
⇢̂2 � ⇢̂1

�
, (29b)

where the relative shell thickness is r = R2/R1 and the no-
shell crossing condition enforces µ2 to be real. The PDF
P(⇢̂1, ⇢̂2), or equivalently P(⇢, s) the PDF of the inner den-
sity ⇢ = ⇢̂1 and slope s = (⇢̂2 � ⇢̂1)/(r � 1), can then be
approximated via a saddle-point approximation by

PR1,R2(⇢̂1, ⇢̂2) =
exp [� R1,R2(⇢̂1, ⇢̂2)]

2⇡
(30)

⇥

s

det


@2 R1,R2

@µi@µj

� ����det

@µi

@⇢̂j

����� ,

which can explicitly be rewritten as

PR1,R2(⇢̂1, ⇢̂2) =
exp [� R1,R2(⇢̂1, ⇢̂2)]

2⇡

p
pR1,R2(⇢̂1, ⇢̂2) ,
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possible to express any ensemble average in terms of the sta-
tistical properties of the initial density field so that we can
formally write

exp [ϕ]=

Z

Dτ1Dτ2 P(τ1, τ2) exp
`

λ1ρ1(τ1) + λ2ρ2(τ2)
´

. (9)

As the present-time densities ρi can arise from different ini-
tial contrasts, the above-written integration is therefore a
path integral (over all the possible paths from initial condi-
tions to present-time configuration) with measure Dτ1Dτ2

and known initial statistics P(τ1, τ2). Let us assume here
that the initial PDF is Gaussian so that,

P(τ1, τ2)dτ1dτ2 =

√
det Ξ exp [−Ψ(τ1, τ2)]

2π
dτ1dτ2 , (10)

with Ψ then a quadratic form.
In the regime where the variance of the density field is

small, equation (9) is dominated by the path correspond-
ing to the most likely configurations. As the constraint is
spherically symmetric, this most likely path should also re-
spect spherical symmetry. It is therefore bound to obey the
spherical collapse dynamics. Within this regime equation (9)
becomes

exp [ϕ]≃
Z

dτ1dτ2 P(τ1, τ2) exp
`

λ1ζSC(τ1)+λ2ζSC(τ2)
´

,(11)

where the most likely path, ρi = ζSC(η, τi) is the one-to-
one spherical collapse mapping between one final density
at time η and one initial density contrast as already de-
scribed. The integration on the r.h.s. of equation (11) can
now be carried by using a steepest descent method, ap-
proximating the integral as its most likely value, where
λ1ρ1(τ1) + λ2ρ2(τ2) − Ψ(τ1, τ2) is stationary. It eventually
leads to the fundamental relation (6) when its right hand
side is computed at initial time (and the fact that (6) is
valid for any times η and η′ is obtained when the same rea-
soning is applied twice, for the two different times).

The purpose of this letter is to confront numerically
computations of the two-cell PDF derived from the expres-
sion of ϕ(λ1, λ2) with measurements in numerical simula-
tions.

2.2 The 2-cell PDF using inverse Laplace

transform

Once the cumulant generating function is known in equa-
tion (3), the 2-cell PDF, P(ρ̂1, ρ̂2), is obtained by a 2D in-
verse Laplace transform of ϕ(λ1, λ2)

P=

Z i∞

−i∞

dλ1

2πi

Z i∞

−i∞

dλ2

2πi
exp(−

X

i=1,2

ρ̂iλi + ϕ(λ1, λ2)) , (12)

with ϕ given by equations (4)-(6). From this equation, it
is straightforward to deduce the joint PDF, P̂(ρ̂, ŝ), for the
density, ρ̂ = ρ̂1 and the slope ŝ ≡ (ρ̂2 − ρ̂1)R1/∆R, ∆R
being R2 − R1, as

P̂ =

Z i∞

−i∞

dλ
2πi

Z i∞

−i∞

dµ
2πi

exp(−ρ̂λ − ŝµ + ϕ(λ, µ)) , (13)

with λ = λ1 + λ2, µ = λ2∆R/R1. Following this definition,
ϕ(λ, µ) is also the Legendre transform of Ψ(ρ̂1, ŝ = (ρ̂2 −
ρ̂1) R1/∆R).

1 2 3 4 5
!6

!4

!2

0

2

4

6

Ρ # density

s
#
s
lo
p
e

2! cell PDF

Figure 1. Joint PDF of the slope (s) and the density (ρ) as
given by equation (13) for two concentric spheres of radii R1 = 10
Mpc/h and R2 = 11 Mpc/h at redshift z = 0.97. Dashed contours
corresponds to Log P = 0,−1/2,−1, · · · − 3 for the theory. The
corresponding measurements are shown as a solid line.
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Figure 2. Dependence of the PDF of the slope on the number
of points used in the numerical integration in (12). The reference
PDF is computed using 10002 points (dark blue) and is compared
to the result of the numerical integration when using 3202 (blue)
and 4802 (light blue) points.

In order to numerically compute equation (12), we sim-
ply choose the imaginary path (λ1, λ2) = i(n1∆λ, n2∆λ)
where n1 and n2 are (positive or negative) integers and the
step ∆λ has been set to 0.15. The maximum value of λi used
here is 75 resulting into a discretisation of the integrand
on 10002 points. Fig. 1 compares the result of the numer-
ical integration of equation (12) to simulations. The corre-
sponding dark matter simulation (carried out with Gadget2

(Springel 2005)) is characterized by the following ΛCDM
cosmology: Ωm = 0.265, ΩΛ = 0.735, n = 0.958, H0 = 70
km·s−1·Mpc−1 and σ8 = 0.8, Ωb = 0.045 within one stan-
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be seen in the bottom panels for ŝ ⇡ �0.5 are not clearly
understood (cosmic variance, numerical artifacts?).
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FIG. 8: The PDF of the profile for z = 1.46. The bottom
panel show the residuals for z = 1.46, z = 0.97 and z = 0.65.

E. The constrained expected profile

We finally move to the key result of this paper. In the
previous subsection, the PDF of ŝ is obtained irrespec-
tively of ⇢̂1. Now we focus on the conditional properties
of ŝ given ⇢̂1 = ⇢̂(< R1) at a given R = R1, whether ŝ is
defined from a nearby radius of not. Mathematically it
can be expressed in terms of the joint PDF, P(⇢̂1, ⇢̂2), as

hŝi⇢̂1 = � R

�R
⇢̂1 +

R

�RP(⇢̂1)

Z
d⇢̂2 ⇢̂2 P(⇢̂1, ⇢̂2) , (86)

given that we have
Z

d⇢̂2 ⇢̂2 P(⇢̂1, ⇢̂2) =

Z +i1

�i1

d�1

2⇡i

@'(�1,�2)

@�2

����
�2=0

exp(��1⇢̂1 + '(�1)) , (87)

!!!!!!!!!!!!!!!!!!
!!
!!
!!
!!
!!!

!!!

!!

!!

!

!!
!!
!

!

!

!
!
!

0.5 1.0 1.5 2.0 2.5

!2.0

!1.5

!1.0

!0.5

0.0

Ρ!R1"

R
1

R
2
!

R
1

#
Ρ
!1

.1
R

1
"!
Ρ
!R

1
"$
Ρ
!R

1
"

!!!
!
!!
!!
!!!!

!!!!!!
!!!!

!

!
!
!

!
!
!
!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!
!!

!!!!
!!
!!!
!
!!!!!

!!!!!!!

!

!
!
!

!
!
!
!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!
!!

0.5 1.0 1.5 2.0 2.5
!0.10

!0.05

0.00

0.05

0.10

Ρ1

!s
" Ρ

1
!
!s
" Ρ

1

N
!

b
o

d
y

Σ
2
$0.475409

! ! !
!

! !

!
!
!
!
!
!
!
!
!
! !

! !

! !

! ! !

!
!
! ! !

!

! !

0.4 0.6 0.8 1.0

!0.04

!0.02

0.00

0.02

0.04

Ρ1

!s
" Ρ

1
!
!s
" Ρ

1

N
!

b
o

d
y

Σ
2
$0.475409

FIG. 9: Top: the conditional profile, hŝi⇢̂(<R1) as a function
of ⇢̂(< R1). The thick blue solid line is the result of the
numerical integration; the thin dashed line the saddle point
approximation Eq. (89). We also present the power law ap-
proximation case as a thin (red) solid line. It is shown to
depart from the exact prediction in the low density region.
the agreement between the theory and the measurements near
the origin is quite remarquable. The bottom panels show the
residuals computed in bins as a function of the density (with a
zoomed plot below). Again the thick symbols are correspond
to the exact calculation, the thin symbols correspond to the
power low approximation.

which can be obtained by explicit integration in the com-
plex plane [65]. Note that we also have the identity,

@'(�1,�2)

@�2

����
�2=0

= ⇢2(�1,�2 = 0) , (88)

from the solution of the stationary equations, Eq. (28).
For the saddle point solution corresponding to the low
⇢ regime, �1 and ⇢̂1 in Eq. (87) are related through the
stationary condition. In this limit we therefore have

h⇢̂2i⇢̂1 = ⇢2(⇢̂1) , (89)

where ⇢2(⇢̂1) is the solution of the system

�1 =
@ (⇢1, ⇢2)

@⇢1
, 0 =

@ (⇢1, ⇢2)

@⇢2
. (90)

These calculations can be extended to the constrained
variance of the profile. The computation follows the same
line of derivation but is slightly more involved. It is pre-
sented in appendix C.
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Figure 3. Density profiles in underdense (solid light blue), over-
dense (dashed purple) and all regions (dashed blue) for cells of
radii R1 = 10 Mpc/h and R2 = 11 Mpc/h at redshift z = 0.97.
Predictions are successfully compared to measurements in simu-
lations (points with error bars).

dard deviation of WMAP7 results (Komatsu et al. 2011).
The box size is 500 Mpc/h sampled with 10243 particles,
the softening length 24 kpc/h. Initial conditions are gener-
ated using mpgrafic (Prunet et al. 2008). An Octree is built
to count efficiently all particles within concentric spheres of
radii between R = 10 and 11Mpc/h. The center of these
spheres is sampled regularly on a grid of 10 Mpc/h aside,
leading to 117649 estimates of the density per snapshot.
Note that the cells overlap for radii larger than 10 Mpc/h.

The convergence of our numerical scheme is investigated
by varying the number of points. Fig. 2 shows that the nu-
merical integration of the slope PDF has reached 1% preci-
sion for the displayed range of slopes. Obviously, the integra-
tion is very precise for low values of the slope and requires
a largest number of points for the large-slope tails.

3 CONDITIONAL DISTRIBUTIONS

3.1 Slope in sub regions

Once the full 2-cell PDF is known, it is straightforward to
derive predictions for density profiles restricted to under-
dense

P(ŝ|ρ̂ < 1) =

R 1

0
dρ̂ P̂(ρ̂, ŝ)

R

∞

−∞
dŝ

R 1

0
dρ̂ P̂(ρ̂, ŝ)

, (14)

and overdense regions

P(ŝ|ρ̂ > 1) =

R

∞

1
dρ̂ P̂(ρ̂, ŝ)

R

∞

−∞
dŝ

R 1

0
dρ̂ P̂(ρ̂, ŝ)

. (15)

Fig. 3 displays these predicted density profiles in underdense
and overdense regions compared to the measurements in our
simulation. A very good agreement is found with some slight
departures in the large slope tail of the distribution. As
expected, the underdense slope PDF peaks towards posi-
tive slope, while the overdense PDF peaks towards negative
slope. The constrained negative tails are more sensitive to
the underlying constraint, providing improved leverage for
measuring the underlying cosmological parameters.

Figure 4. Density PDF in negative slope (solid light blue), pos-
itive slope (dashed purple) and all regions (dashed blue) for cells
of radii R1 = 10 Mpc/h and R2 = 11 Mpc/h at redshift z = 0.97.
Predictions are successfully compared to measurements in simu-
lations (points with error bars).

Figure 5. Same as Fig. 3 for a range of redshifts as labeled.
Only the underdense (ρ < 1) and the overdense (ρ > 1) PDFs are
shown.

3.2 Density in regions of given slope

Conversely, one can study the statistics of the density given
constraints on the slope. For instance, the density PDF in
regions of negative slope reads

P(ρ̂|ŝ < 0) =

R 0

−∞
dŝ P̂(ρ̂, ŝ)

R

∞

0
dρ̂

R 0

−∞
dŝ P̂(ρ̂, ŝ)

. (16)

Fig. 4 displays the predicted density PDF in regions of pos-
itive or negative slope. As expected, the density is higher
in regions of negative slope. An excellent agreement with
simulations is found.

3.3 Redshift evolution

Fig. 5 displays the density profiles in underdense and over-
dense regions as measured in the simulation for a range of
redshifts. This figure shows that the high density subset for
moderately negative slopes is particularly sensitive to red-
shift evolution, which suggests that dark energy investiga-
tions should focus on such range of slopes and regions.
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, (31)

with  ,1 and  ,2 denoting partial derivatives with regard to
⇢̂1 and ⇢̂2 respectively.

This change of variables allows to get analytical approx-
imations valid for a wide range of densities and variances.
In particular, for a variance � = 0.48, the right panel of
Fig. 10 shows that the critical line (in red) only excludes a
marginal fraction of the ⇢�s plane (between the red and the
grey lines) which has very little weight (P ⇡ 0 in those re-
gions). The full joint PDF of concentric densities and slopes
computed from equation (30) is also shown in Fig. 10 while
Fig. 11 uses the two-dimensional knowledge of the PDF to
predict the PDF of the slope in subregions (under-dense,
over-dense or unconstrained inner cells). The agreement be-
tween measurements and the analytical predictions given by
equation (30) is remarkably good, even better than the nu-
merical integration of Bernardeau, Codis & Pichon (2015),
which probably su↵ers from numerical inaccuracies in the
rare event tails of the distribution. The success of this ana-
lytical approach is to be contrasted with the severely limited
range of validity of the saddle-point approximation of the
density PDF illustrated in the left panel of Fig. 10.

5 CONCLUSION

5.1 Summary

The large deviation principle allows us to make simple and
accurate predictions for the cumulants of the distribution of
the density within concentric shells based on spherical col-
lapse dynamics. Using the log density considerably extends
the regime where the PDF derived from the saddle-point
approximation matches the exact PDF because it remedies
the problem of criticality reported before.

In particular, the simple analytic model is shown to be
able to match the PDF of the density for all densities when
compared with a numerical integration in the complex plane.
The result for the log-density can be easily linked to the PDF
of the density as a one-line approximation, equation (11)
and also yields excellent results over a large range of den-
sity values when compared to measurements from N -body
simulations as illustrated in Fig. 8. In particular, this ex-
pression gives immediate access to the rare event tail of the
density PDF for large positive densities. The two cells joint
PDF of the log density was also presented in the saddle ap-
proximation limit. The mass weighted logarithmic mapping
performed according to equation (29) yields also an analytic
PDF and works very well, making almost the entire space
of density and slope {⇢, s} accessible as shown in Fig. 10.

The origin of the success of the log-density lies in the
applicability of its saddle-point approximation and is sup-
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Figure 11. Top panel: PDF of the slope, of the slope when the
inner density is below one and of the slope when the inner den-
sity is above one. Error bars represent the error on the mean
as measured in our simulation, red lines represent the numerical
integration while blue lines are the log-mass saddle approxima-
tion given by equation (30). The agreement is very good for the
whole range of density and slope probed by the simulation. Bot-
tom panel: residuals of measured slope PDFs compared to the
log-mass saddle approximation corresponding to the blue lines in
the top panel.

ported by the quality of the Ansatz corresponding to equa-
tion (7), as the cumulants of the log transformed field de-
pend more weakly on their (finite) variance, as illustrated
in Fig. 2. This can also render tree-level perturbation the-
ory in the log density more successful in predicting reduced
cumulants of the density.

5.2 Perspectives for Dark Energy

Statistics for densities in concentric shells will prove very
useful in upcoming surveys as they allow us to study the
clustering of peaks (or voids) in the mildly non linear regime
(� ⇠ 1) and serve as a statistical indicator to test gravity
and dark energy models and/or probe key cosmological pa-
rameters in carefully chosen subsets of surveys.

A clear asset of the analytical saddle approximation is
that it provides means of simply probing the variation of
counts in cells for arbitrary initial power spectra and spheri-
cal collapse models, which is clearly of interest in the context
of dark energy/modified gravity investigations. In particu-
lar, it has to be noted that unlike the numerical integra-
tion in the complex plane given by equation (8), the saddle-
point method equations (11) in the one-cell case and (30) in
the two-cell configuration do not require an analytical lin-
ear power spectrum. In particular, ⇤-CDM-like power spec-
tra can be used in this context. Recall that the knowledge
of the linear power spectrum determines the values of the
cross-correlation matrix elements, ⌃ij , that are explicitly

© 0000 RAS, MNRAS 000, 000–000
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where ⇣e↵(�lin<
) is adjusted so that 'e↵(�) provides a good

fit to the SCGF we computed, in particular reproducing
its critical behaviors. In practice one can get a very good
fit with a fifth order polynomial for ⇣e↵ .
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FIG. 5: The e↵ective cumulant generating functions '
e↵ and

'g
e↵ satisfying Eq. (51). The projection factor we↵ = 0.1 is

used on the 'g
e↵ data.

The e↵ective cumulant generating function obtained
this way reproduces extremely accurately the global be-
havior obtained previously in particular for its critical
points.

The reconstruction of the one point PDF of �ap is then
obtained from the following form,

P (�ap) =

Z i1

�i1

d�

2⇡
exp[�� �< + '�<

(�)] . (52)

where the function '�<
(�) is built from the SCGF,

'�<
(�) =

1

�̂2
'
(� �̂

2) (53)

in such a way that �̂
2 matches the expected variance

of �ap. The actual computation of such inverse Laplace
transforms has been described in referenced papers and
is based on the integration along the imaginary axis.

The resulting PDFs, P (�ap) and P (�gap) built respec-
tively from the shear field and the reduced shear field
are shown in Fig. 6. For these ranges of �ap and this
value of we↵ the relative errors are about a few percent
as shown on Fig. 7 consistent with our findings concern-
ing the skewness. What these results show however is
that the extra non-linearities contained in the reduced
shear expression have little e↵ects on the global shape of
the PDFs.
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FIG. 6: PDFs obtained from the inverse Laplace transforma-
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and 'g

for �̂ = 0.4 (top two curves) and �̂ = 0.7
(bottom two curves). The �gap is reconstructed for we↵ = 0.1.
In each case P (�gap) is sightly larger than P (�ap) for �ap ⇡ 0

exhibiting slightly stronger non-Gaussianities.
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FIG. 7: Di↵erence of the PDFs shown on Fig. 6 for �̂ = 0.4
(blue curve), �̂ = 0.5 (red curve) and �̂ = 0.7 (yellow curve).

V. CONCLUSION

We demonstrated in this study that it was possible
to take advantage of the LDP to compute scaled cumu-
lant generating functions and the corresponding PDF for
a wide range of observables, namely the derivation of
statistical properties of quantities obtained by general
(symmetric) filtering of functionals of the density profiles.
The derivation of Eq. (38) is an example of such a con-
struction. It gives there the scaled cumulant generating
function of a nonlinear functional of the density profile
obtained through a minimization problem. We subse-
quently show that it can be successfully implemented in
practice. In particular we demonstrated in Section IV
that the numerical results we obtained were solid in dif-
ferent ways: by using the solution of the Euler-Lagrange
equation of the minimization problem when possible; by
comparing our results at the level of the third order cu-
mulant which can be computed explicitly.
It gives us the opportunity to derive the cumulant gen-

erating function and the corresponding one-point PDF of
the aperture mass, �gap, in a general framework. In par-

Map = ∫ d2ϑ W(ϑ)
γt

1 − κ

- Gaussian profile
- Taking into account the fact 

that what we measure is the 
reduced shear (i.e. a non-
linear functional of the 
profile)

P. Reimberg, FB, ‘17
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tively from the shear field and the reduced shear field
are shown in Fig. 6. For these ranges of �ap and this
value of we↵ the relative errors are about a few percent
as shown on Fig. 7 consistent with our findings concern-
ing the skewness. What these results show however is
that the extra non-linearities contained in the reduced
shear expression have little e↵ects on the global shape of
the PDFs.
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V. CONCLUSION

We demonstrated in this study that it was possible
to take advantage of the LDP to compute scaled cumu-
lant generating functions and the corresponding PDF for
a wide range of observables, namely the derivation of
statistical properties of quantities obtained by general
(symmetric) filtering of functionals of the density profiles.
The derivation of Eq. (38) is an example of such a con-
struction. It gives there the scaled cumulant generating
function of a nonlinear functional of the density profile
obtained through a minimization problem. We subse-
quently show that it can be successfully implemented in
practice. In particular we demonstrated in Section IV
that the numerical results we obtained were solid in dif-
ferent ways: by using the solution of the Euler-Lagrange
equation of the minimization problem when possible; by
comparing our results at the level of the third order cu-
mulant which can be computed explicitly.
It gives us the opportunity to derive the cumulant gen-

erating function and the corresponding one-point PDF of
the aperture mass, �gap, in a general framework. In par-
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is the expected number of spheres with density in the in-
terval considered. For a large enough number of spheres,
sampling errors can therefore be neglected and the cosmic
variance is directly proportional to b

2 where here b is defined
as the mean density bias in the bin

b =

Z

�̂

P(⇢)b(⇢)d⇢/

Z

�̂

P(⇢)d⇢ , (11)

where the density bias, b(⇢), entering equation (5) will later
be shown to obey equation (42).

Similarly, the correlations between the counts in di↵er-
ent bins of density can be investigated. The probability of
having N1 spheres with density in �̂1 = [⇢̂1 � �⇢/2, ⇢̂1 +
�⇢/2] and N2 spheres with density in �̂2 = [⇢̂2��⇢/2, ⇢̂2+
�⇢/2] is unbiased and has a covariance

hN1N2i = N̄1N̄2(1 + ⇠b1b2) , (12)

with b1 and b2 being defined as in equation (11) for the
bins ⇢̂1 ± d⇢̂1/2 and ⇢̂2 ± d⇢̂2/2. The proof of this result
is derived in Appendix C and can be easily generalized to
any number of concentric cells. Note that equations (10) and
(12) are only valid in the Poisson limit (see Appendix C for
the exact expression).

The consequence for the error budget of the one-cell
PDF is as follows. Let us define P̂(⇢̂i) = Ni/Nt/�⇢, the esti-
mate of the PDF measured from a set of Nt spheres when the
range of densities is divided in bins centred on ⇢̂i with width
�⇢. First, this estimator, P̂, is unbiased. Equations (10) and
(12) also yield the expected error on the estimate of the PDF

D
P̂(⇢̂i)

2
E
�

D
P̂(⇢̂i)

E2
=

P̄(⇢̂i)
�⇢Nt

+ b
2
i ⇠

�
P̄(⇢̂i)

�2
, (13)

where the mean PDF in the bin is P̄(⇢̂i) =
R
�̂i

P(⇢)d⇢/�⇢

and b
2
i

�
P̄(⇢̂i)

�2
is the mean value squared of the bias in

the density bin,
⇣R

�̂i
P(⇢)b(⇢)d⇢/�⇢

⌘2
. Furthermore, the

typical correlation between two distinct bins, i 6= j, is given
by

D
P̂(⇢̂i)P̂(⇢̂j)

E
= P̄(⇢̂i)P̄(⇢̂j)(1 + ⇠bibj) . (14)

In particular, it is straightforward to see that equation (14)
is fully consistent with equation (9) in the one-cell case.
Indeed, from equations (14) and (13), one can compute for
instance the correlation between the estimated moment of
order p of the density and the moment of order q

Mpq=h⇢p ⇢qi ,

=
X

i,j

(�⇢)2
D
P̂(⇢̂i)P̂(⇢̂j)

E
⇢̂
p
i ⇢̂

q
j ,

=
X

i,j

(�⇢)2P̄(⇢̂i)P̄(⇢̂j)(1+⇠bibj)⇢̂
p
i ⇢̂

q
j+

X

i

�⇢

Nt
⇢̂
p+q
i P̄(⇢̂i),

=
1
Nt

⌦
⇢
p+q↵+ h⇢

p
i h⇢

q
i+ ⇠ hb(⇢)⇢pi hb(⇢)⇢qi ,

which in terms of cumulants can be rewritten as

Cpq = h⇢p ⇢qic =
1
Nt

⌦
⇢
p+q↵

c
+ ⇠ hb(⇢)⇢pic hb(⇢)⇢

q
ic , (15)

so that equation (9) is recovered in the one-cell case.
The rest of the paper is devoted to demonstrating and

validating equation (5).

3 TREE ORDER GENERATING FUNCTION

Let us first compute the generating function, 'b of the cu-
mulants containing any power of the densities in one location
and one power of the density at an arbitrary distance. As
we shall see, such cumulants enter the derivation of equa-
tion (5). For that purpose, we first consider n concentric
cells in one location of space.

3.1 Definitions and relation to spherical collapse

Bernardeau et al. (2014) (hereafter BPC) computed
P({⇢̂k}), the joint one-point PDF of the density within con-
centric spheres, in a highly symmetric configuration (spher-
ical symmetry) where non-linear solutions to the gravita-
tional dynamical equations are known explicitly. The corre-
sponding symmetry implies that the most likely dynamics
(amongst all possible mappings between the initial and fi-
nal density field) is that corresponding to spherical collapse.
In the limit of small variance, BPC showed using a saddle
approximation that the Laplace transform of P({⇢k}) cor-
responds to the cumulant generating function of densities in
concentric cells '({�k}), and can be predicted analytically.
This function is indeed closely related to the non-linear evo-
lution of a spherically symmetric perturbation in the linear
growing mode regime and reads

'({�k}) =
1X

pi=0

h⇧i ⇢i
pi(Ri)ic

⇧i�
pi
i

⇧ipi!
, (16)

where ⇢i is the density (in units of the average density)
within the radius Ri. For this construction, it is essential
that the cells are all spherical and concentric.

Let us denote ⇣(⌧) the non-linear transform of the den-
sity so that

⇢ = ⇣(⌧) , (17)

where ⇢ is the density within the radius R and ⌧ is the
linear density contrast within the radius R⇢

1/3 (for mass
conservation). An explicit possible fit for ⇣(⌧) is given by

⇣(⌧) =
1

(1� ⌧/⌫)⌫
, (18)

where ⌫ can be adjusted to the actual values of the cosmo-
logical parameters (⌫ = 21/13 provides a good description
of the spherical dynamics for an Einstein-de Sitter back-
ground for the range of ⌧ values of interest). The main re-
sult of BPC was that the cumulant generating function at
tree order could be computed explicitly from its Legendre
transform2,  ({⇢k}), as

'({�k}) =
X

i

�i⇢i � ({⇢k}) , (19)

where the {⇢k} are functions of the {�i} via the stationary
conditions

�i =
@

@⇢i
 ({⇢k}) , i = 1· · ·n . (20)

2 Recently, Bernardeau & Reimberg (2015) showed that the
prediction for the cumulant generating function given by equa-
tion (19) originates from a regime of large deviations (see
Touchette 2011, for a review) at play in the gravitational evo-
lution of cosmic structures.
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Joint PDFs read in the large-
separation limit (no finite separation 
effects)

Correlation of measured density probabilities in different locations

Correlations of multi-cell densities 3

Figure 1. The configuration of spherical cells considered in this
paper which is made of multiple sets of concentric spheres sepa-
rated by distances rIJ. Their respective density, ⇢I,i, corresponds
to a set of n spheres of same radii RI,i ⌘ Ri.

der to estimate the induced bias and variance, let us study
the joint statistics of these sets.

2.1 The bias function of concentric spheres

Let us consider multiple sets (labelled from I = 1 to Nt) of n
concentric spheres (labelled from k = 1 to n) of radii RI,k ⌘

Rk separated by distances rIJ, and define the corresponding
measured (hence the hat) densities {⇢̂I,k} (see Fig. 1 for an
illustration). The joint PDF of those Nt sets,

P({⇢̂1,k}, . . . , {⇢̂Nt,k}; {rIJ}) , (3)

is characterized by the full knowledge of the cumulants of
the form

h⇢
p1
1,1 . . . ⇢

pn
1,n⇢

q1
2,1 . . . ⇢

qn
2,n . . . ⇢Nt,1

s1
. . . ⇢

sn
Nt,n

ic . (4)

The purpose of this paper is to estimate the joint PDF
P({⇢̂1,k}, . . . , {⇢̂Nt,k}; {rIJ})) in the large-separation limit,
where rIJ � Rmax = maxj Rj . In this limit, we will demon-
strate in Section 4.2 that this PDF reads

P({⇢̂1,k}, . . . , {⇢̂Nt,k}; {rIJ} � Rj) =

NtY

I=1

P({⇢̂I,k})

"
1 +

X

I<J

b({⇢̂I,k})b({⇢̂J,k})⇠(rIJ)

#
, (5)

where ⇧IP({⇢̂I,k}) is the product of one-point PDFs, ⇠(r)
is the underlying dark matter correlation function, and
b({⇢̂I,k}) is some local bias function for the set I of n con-
centric spheres. This is the count-in-cell analog of the so-
called peak-background-split or clustering bias. Equation (5)
is the key result of this paper and will be used in the follow-
ing sections to compute b({⇢̂I,k}) whose final expression is
given by equations (36) and (42) below. We will also show
in Section 4.4 that the bias obeys

R
b(⇢)P(⇢)d⇢ = 0 andR

⇢ b(⇢)P(⇢)d⇢ = 1 so that the N-point PDF given in equa-
tion (5) is normalised and its marginal in one location is
exactly given by the one-point PDF.

Equation (5) allows us to define the excess probability
of having the sets of densities {⇢̂1,k}, . . . , {⇢̂Nt,k} separated
by {rIJ} as

⇠Nt({⇢̂1,k}, . . . , {⇢̂Nt,k}) =
X

I<J

b({⇢̂I,k})b({⇢̂J,k})⇠(rIJ). (6)

From equation (6), we see that the error in assuming that the
draws of concentric densities in simulations are independent
scales like the dark matter correlation1.

2.2 The bias and variance of concentric cumulants

Let us now define the arithmetic mean over sets of concentric
spheres as

⇢
p1
1 . . . ⇢

pn
n ⌘

1
Nt

X

I

⇢
p1
I,1 . . . ⇢

pn
I,n . (7)

This quantity naturally corresponds to what astronomers
would measure in practice (spatial averages rather than en-
semble averages). Our purpose is to quantify the bias and
the expected cosmic variance of this estimator. Given equa-
tion (5), one can check that the expectation of the arithmetic
estimator defined by equation (7) obeys

h⇢
p1
1 . . . ⇢

pn
n ic = h⇢

p1
1 . . . ⇢

pn
n ic , (8)

so that the mean of the estimator given by equation (7) is
unbiased at large distances.

Let us now estimate the cross correlation of this estima-
tor, Cpq ⌘ h⇢

p1
1 . . . ⇢

pn
n ⇢

q1
1 . . . ⇢

qn
n ic and express it in terms

of moments of the bias function

Cpq =
1
Nt

⌦
⇢
p1+q1
1 . . . ⇢

pn+qn
n

↵
c
+

1

Nt
2

X

I 6=J

⇠(rIJ)⇥

hb(⇢1. . .⇢n)⇢
p1
1 . . .⇢

pn
n ic hb(⇢1. . .⇢n)⇢

q1
1 . . .⇢

qn
n ic . (9)

The first term in equation (9) is the error on the mean which
is the typical error if draws are independent. The correla-
tions between the draws – i.e the cells – lead to an addi-
tional source of errors encoded in the second term which
corresponds to the bias function. Note that as expected, in
the very large separation limit where ⇠(rIJ) ! �IJ, we get
Cpq ! C

0
pq/Nt.

2.3 Errors on the PDF

Let us finally quantify the cosmic variance on the estimate
of the one-cell PDF when measuring densities in a finite
number Nt of spheres. In this case, it is necessary to take
into account the discreteness of the counts and the size of
the bins of density.

The probability of having N spheres with density in
the interval �̂ = [⇢̂ � �⇢/2, ⇢̂ + �⇢/2] is unbiased and has
variance

⌦
N2↵

� hNi
2 = N̄ + b

2
⇠̄N

2
, (10)

where ⇠ is the mean correlation between the spheres, ⇠ =P
I 6=J ⇠(rIJ)/[Nt(Nt � 1)], and N̄ = pNt with p =

R
�̂
d⇢P(⇢)

1 In analogy with the corresponding situation for peaks, we can
anticipate corrections involving derivative of the dark matter cor-
relation at shorter separations.
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assumptions regarding the power spectrum, we expect that
σ(Re, Ri) are essentially all equal and given by

σ(< Re, < Ri) ≈ σ(< Re, 0) ≡ σ(< Re). (26)

Equation (25) can then be simplified as

ϕb({λk}; < Re) = 1 + σ(< Re)
n
X

i=1

n
X

j=1

Ξ̂ij τ̂j . (27)

This implies in particular that cumulant generating function
for the density at some given distance re from the n cells
obeys (via equation (23))

ϕb({λk}; re) = 1 + ξ(re)
n
X

i=1

n
X

j=1

Ξ̂ij τ̂j , (28)

where ξ(re) is the DM correlation function at distance re:

ξ(re) ≡
1
r2

e

d
dre

„

r3
e

3
σ(< re)

«

.

Let us then define the bias function

bϕ({λk}) ≡
n
X

i=1

n
X

j=1

Ξ̂ij τ̂j , (29)

so that

ϕb({λk}; re) = 1 + ξ(re)bϕ({λk}) . (30)

Within this approximation we see, recalling equa-
tion (18), that all cumulants of the form ⟨ρp1

1 . . . ρpn
n ρ′

1⟩c
(where the ρ and ρ′ are located on cells centered at distance
re ≫ Ri from one another) are proportional to ξ(re).

3.4 The n+p formalism

Within the same approximation, for re much larger than Ri

[♠ ceci est une conjecture a betonner ] we can also
write

⟨ρp1
1 . . . ρpn

n ρ′q1
1 . . . ρ′qm

m ⟩c =

1
ξ(re)

⟨ρp1
1 . . . ρpn

n ρ′
1⟩c⟨ρ1ρ

′q1
1 . . . ρ′qm

m ⟩c , (31)

where the ρi correspond to a set of radii Ri of cells centered
at, say, the origin and the ρ′ correspond to a set of radii R′

i

of cells centered on a point at distance r0 from the origin. At
the level of the generating functions equation (31) implies
that

ϕ({λk}, {µk}; re) =

ϕ({λk}) ϕ({µk}) + bϕ({λk}) ξ(re) bϕ({µk}) , (32)

where ϕ({λk}, {µk}; re) is the generating functions of the
joint cumulants, ⟨ρp1

1 . . . ρpn
n ρ′q1

1 . . . ρ′qm

m ⟩c.

3.4.1 Consequences for the joint PDFs

The structure of equation (32) in the cumulants generat-
ing functions has direct consequences at the level of the
corresponding joint PDFs. Let us consider a double set
of concentric shells separated by a distance re, and define

the corresponding densities {ρ̂k} and {ρ̂′
k}. The joint PDFs

P({ρ̂k}, {ρ̂′
k}; re) takes, at leading order, the following form

P({ρ̂k}, {ρ̂′
k}; re) =

P({ρ̂k})P({ρ̂′
k})
ˆ

1 + ξ(re)b({ρ̂k})b({ρ̂′
k})
˜

, (33)

given

P({ρ̂k}) =

Z

dλ1

2πi
. . .

dλn

2πi
exp (λiρ̂i − ϕ({λk})) , (34)

and

b({ρ̂k})P({ρ̂k}) =
Z

dλ1

2πi
. . .

dλn

2πi
bϕ({λk}) exp (λiρ̂i − ϕ({λk})) , (35)

where we have introduced the corresponding effective bias
function, b({ρ̂k}). Equation (33) is one of the main results
of this paper. It defines the bias functions we introduced in
equation (3), which generalizes equation (32).

4 VALIDATION

In the following we present the explicit computation of this
bias function for the density and for the density slope ŝ.

The dark matter simulation (carried out with Gadget2

(?)) is characterized by the following ΛCDM cosmology:
Ωm = 0.265, ΩΛ = 0.735, n = 0.958, H0 = 70
km·s−1·Mpc−1 and σ8 = 0.8, Ωb = 0.045 within one stan-
dard deviation of WMAP7 results (?). The box size is 500
Mpc/h sampled with 10243 particles, the softening length 24
kpc/h. Initial conditions are generated using mpgrafic (?).
An Octree is built to count efficiently all particles within
a given sequence of concentric spheres of radii between
R = 4, 5 · · · up to 18Mpc/h. The center of these spheres
is sampled regularly on a grid of 10 Mpc/h aside, leading to
117649 estimates of the density per snapshot. Note that the
cells overlap for radii larger than 10 Mpc/h.

4.1 Density bias function

The density bias function b(ρ̂) for different values of the
squared variance is shown on Figure 2. As expected, the
larger the density, the stronger the bias. The bias ampli-
tude is reduced for larger variances. [♠ pas complement
evident pourquoi?]

Measurements in simulations are shown in Figure 3. [♥
This is ongoing work. I need to compute the pre-
diction for comparison and explain what is exactly
plotted]

4.2 Slope bias function

The slope bias function b(s) for different values of the
squared variance are shown on Figure 4. The bias is
strongest for negative slopes (near peaks). The asymmetry
is weakened with variance. [♠ encore pas tres clair...]

Comparison with simulation is displayed in Figure 5.
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Figure 4. Left-hand panel: The density bias function b(⇢̂) for di↵erent values of the variance (�=0.39, 0.48 and 0.55 for respectively the
red, yellow and blue lines). The prediction computed numerically via equation (42) is displayed with solid lines while the dashed lines
correspond to the analytical low-density approximations given by equation (44). Measurements in the simulation for spheres of radius
R = 10Mpc/h separated by re = 40Mpc/h are shown with error bars and are successfully compared to the numerical prediction (solid
lines) for the full range of variances and densities. The low-density approximations break down for ⇢ >⇠ 1. Right-hand panel: Residuals
between the measured density bias (error bars) and its numerical prediction from equation (42) (displayed with solid lines on the left-hand
panel). The yellow and red error bars have been shifted along the x-axis respectively by 0.03 and 0.06 for aesthetic purposes.

where W3D is the top-hat filter function

W3D(k) =
3
k2

(sin(k)/k � cos(k)) . (63)

Again, for the sake of simplicity, we choose to parametrize
this covariance matrix by

�
2(Ri, Ri) = �

2(Rp)

✓
Ri

Rp

◆�ns(Rp)�3

, (64)

�
2(Ri, Rj>i) = �

2(Rp)R
ns(Rp)+3
p G(Ri, Rj , ns(Rp)) , (65)

where

G(x, y, ns) = R
�ns�3
p

R
d3k k

nsW3D(kx)W3D(ky)R
d3k knW3D(kRp)W3D(kRp)

=
(x+y)↵

�
x
2+y

2
�↵xy

�
�(y�x)↵

�
x
2+y

2+↵xy
�

2↵(ns + 1)x3y3
,

with ↵ = 1 � ns. We are now in a position to compute the
two-cell rate function, cumulant generating function, PDF
and finally the e↵ective two-cell bias function. The slope bias
b(ŝ) predicted by this formalism is shown in Fig. 6 (right-
hand panel). Two configurations are shown to be uncorre-
lated (b(ŝ) = 0) and roughly correspond to slopes ŝ ⇡ ±0.5
with some �-dependence. This situation is of particular in-
terest as, according to equation (13), cosmic variance is dras-
tically reduced in this case where only subdominant contri-
butions will appear such as Poisson noise and small-scale
e↵ects. Besides this noteworthy case, it is found that small
slopes (|ŝ| . 0.5) are negatively biased while regions with
larger (positive or negative) slope are more clustered. As
expected, the bias is stronger for large slopes which typi-
cally correspond to sharp peaks (or voids) and will scale like
b(ŝ) / ŝ in the very large slope limit as explained in ap-
pendix F. This asymptotic large |s| behaviour can be com-
pared once again to the linear Kaiser bias, given by equa-
tion (1), but in the contrast of the peak rather than the
slope. Note also that the asymmetry of the bias function is
weakened with variance.

The predictions for the density and slope bias functions
are compared against simulations in the next section.

6 VALIDATION AGAINST SIMULATIONS

In the following we present the measurement of this e↵ective
bias function for the density ⇢̂ and for the density slope ŝ.

The dark matter simulation (carried out with Gadget2,
Springel 2005) is characterized by the following ⇤CDM cos-
mology: ⌦m = 0.265, ⌦⇤ = 0.735, n = 0.958, H0 = 70
km·s

�1
·Mpc�1 and �8 = 0.8, ⌦b = 0.045 within one stan-

dard deviation of WMAP7 results (Komatsu et al. 2011).
The box size is 500 Mpc/h sampled with 10243 particles, the
softening length 24 kpc/h. Initial conditions are generated
using mpgrafic (Prunet et al. 2008). An Octree is built to
count e�ciently all particles within a given sequence of con-
centric spheres of radii between R = 4, 5 · · · up to 18Mpc/h.
The center of these spheres is sampled regularly on a grid
of 10Mpc/h aside, leading to 117649 estimates of the den-
sity per snapshot. Note that the cells overlap for radii larger
than 10Mpc/h.

6.1 Density bias function

The density bias is estimated from spheres of radius R =
10Mpc/h that are separated by re = 40Mpc/h using the
cross-correlations defined in equation (48). More precisely,
we compute a sum over each sphere I with density ⇢I and
its 6 neighbours at distance re = 40Mpc/h labelled with the
indices ↵I,j for 1 6 j 6 6

b̂(⇢̂) =
1

⇠̂

"P
I

P6
j=1 B(⇢̂��⇢/2 6 ⇢I 6 ⇢̂+�⇢/2)⇢↵I,j

6
P

I B(⇢̂��⇢/2 6 ⇢I 6 ⇢̂+�⇢/2)
� 1

#

where B is a boolean function which evaluates to one if the
density is in a bin centred on ⇢̂ with width �⇢ = 3/21 and
the measured dark matter correlation function at distance
re is given by

⇠̂(re) =

PNt
I=1

P6
j=1 ⇢I⇢↵I,j

6Nt
� 1. (66)

In practice, we count all pairs of spheres only once when
computing ⇠̂(re) by only considering three neighbours for
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Figure 6. The slope bias b(ŝ) for di↵erent values of the variance
as labelled. Measurements in the simulation for spheres of radii
R1 = 10Mpc/h and R2 = 11Mpc/h separated by re = 40Mpc/h
using the estimator defined in equation (67) are displayed with
error bars and compared with the prediction (solid line).
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Figure 7. The slope bias b(ŝ) measured in the simulation at red-
shift z = 0.97 corresponding to � = 0.48 and for di↵erent values
of the separation from re = 20Mpc/h to 60Mpc/h as labelled.
The measurements quickly converge towards the predicted large-
separation limit (red solid line).

the large-distance approximation was quantified against nu-
merical simulations and shown to be valid for fairly close
cells (almost adjacent), strengthening earlier findings by
Bernardeau (1996) in the one-cell case. These simulations
where also used to assess the validity of the large-deviation
principle, which only formally holds in the zero variance
limit, but was shown to give accurate predictions even for
variance of order unity, in the so-called quasi-linear (or
mildly non-linear) regime. The bias functions (b(⇢̂), b(ŝ) in
this work) allow us to quantify the covariances expected in
finite volume e↵ects, hence build accurate maximum like-
lihood estimators that could be applied to future surveys.
The shape of b(ŝ) we found suggests that tailoring counts to
cells which have slopes of the order of ±1/2 could be used
to mitigate its e↵ect.

While those predictions rely on numerical integration
in the complex plane, the recent results of Uhlemann et al.

(2015) sets the stage for accurate analytical approximations,
using the logarithmic transform of the density. It would
therefore be of interest to apply this transformation to the
two-point statistics presented in this paper. This will be the
topic of upcoming work.

It would also be worth extending the investigation of
biases and cosmic variance to the velocity field following the
results obtained by Bernardeau (1992) in the one-point case,
and to projected densities.
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For the slope



A regime of large-deviation functions can be identified in LSS 
cosmology. 

- Observables can be related to joint PDFs of the density in concentric 
cells but also to the cumulant generating function.  

Perspectives - what are the domains of application ?: 

- These calculations can be applied to 3D and projected mass maps, 
and to joint density of multiple tracers; 

- biasing of over-dense/under-dense regions can also be computed = 
statistical properties of clipped regions; 

- it can be applied to some non-linear transforms of the density field;  
- other configuration/geometries ? 


