Francis Bernardeau

A Large-Deviation Principle at play in large-scale structure cosmology

Old ideas in a « new pot »

Institut de Physique Théorique CEA-Saclay
20-22 September, 201

PTchat

A Workshop on Resummation Methods in Cosmological Perturbation Theory

The workshop aims at gathering active researchers in the development of efficient analytical methods
for the computation of the statistical properties of the large-scale structure of the Universe. It will provide the opportunity for participants to present
and discuss the merit ands scopes of the different and discuss the merit ands scopes of the different
Perturbation Theory approaches that have been pu forward in recent years.

This meeting is supported by the French
This meeting is supported by the Frenchcea
ches

PTChat at Cargèse
April 30 - Mai 3, 2013

Application and registration
htto: $/ / /$ IMWW.iesc.univ-corse.fr/index.php?
No Registration fees
Deadilin for applicait

Moving from « naked" correlation functions to "dressed " or regularised correlation functions

e.g. clipped density field, or peaks, etc.

Building dressed correlation functions

$$
\left\langle\rho\left(x_{1}\right) \rho\left(x_{2}\right)\right\rangle=1+\xi\left(\left|x_{1}-x_{2}\right|\right)
$$

$$
\begin{aligned}
\left\langle\hat{\rho}_{\theta}\left(x_{1}\right) \hat{\rho}_{\theta}\left(x_{2}\right)\right\rangle & = & \left\langle\hat{\rho}_{\theta}\left(x_{1}\right)\right\rangle\left\langle\hat{\rho}_{\theta}\left(x_{2}\right)\right\rangle\left[1+\hat{\xi}\left(\left|x_{1}-x_{2}\right|\right)\right] \\
& = & \left\langle\hat{\rho}_{\theta}\left(x_{1}\right)\right\rangle\left\langle\hat{\rho}_{\theta}\left(x_{2}\right)\right\rangle\left[1+\hat{b}_{\theta_{1}} \hat{b}_{\theta_{2}} \xi\left(\left|x_{1}-x_{2}\right|\right)\right]
\end{aligned}
$$

This form assumes that the «dressed» density is defined locally (like the local density in a spherical region, from higher order derivative, etc.) and that the scale at which it is defined is much smaller than the separation.

Perturbatively, it collects contributions coming from higher correlation function in the squeezed limit.

Building dressed correlation functions

If one knows how to compute the dressed density, then the bias factor is given by the linear response of the dressed density with a large-scale variation.

Are there quantities that are better suited for such calculations, taking into account non-linear evolution?

The new pot = the large deviation principle.

Large-deviation theory, one step beyond the central limit theorem.

It adresses the question: what is the most likely way for an unlikely event to happen?

Can serve as a computational method and/or guideline for quantities of interest

Basics of theory of large deviation functions

Review paper by Hugo Touchette, ‘09
One exemple : tossing coins and taking the average number of heads

Put a threshold at a fixed position
Central limit theorem : $\quad I(x)=2(x-0.5)^{2}$
Exact result : $\quad I(x)=x \log [x]+(1-x) \log [1-x]+\log [2]$

The cumulant generating function: $\varphi(\lambda)=\log \left(e^{\lambda} / 2+1 / 2\right)$
Cramér's Theorem : both are Legendre transform of one-another

Key theorems: from rate function to scaled cumulant generating functions

The Contraction Principle: the rate function of an unlikely event is the rate function of the most likely configuration for it to happen.

For a mapping $x \rightarrow y$ we have, $\quad I(y)=\inf _{x, x \rightarrow y} I(x)$ that is the rate function for y is the smallest rate function (the most probable) of the values (configurations) that lead to y.

The Gärtner-Ellis Theorem (Cramér's Theorem for IID): the rate function is the Legendre-Fenchel transform of the (scaled) cumulant generating function

$$
I(\rho)=\sup _{\lambda}[\lambda \rho-\varphi(\lambda)]
$$

Under some regularity conditions, this relation can be inverted in

$$
\varphi(\lambda)=\sup _{\rho}[\lambda \rho-I(\rho)]
$$

The scaled cumulant generating function:

$$
\varphi(\lambda)=\lim _{\left\langle\rho^{2}\right\rangle_{c} \rightarrow 0}\left\langle\rho^{2}\right\rangle_{c} \sum_{p=1}^{\infty} \frac{\left\langle\rho^{p}\right\rangle_{c}}{p!}\left(\frac{\lambda}{\left\langle\rho^{2}\right\rangle_{c}}\right)^{p}=\lambda+\frac{\lambda^{2}}{2}+S_{3} \frac{\lambda^{3}}{3!}+\ldots
$$

Large-Deviation Principle in the context of large-scale structure cosmology

Discrete of continuous sets of Gaussian variables obey the Large Deviation Principle: their rate function is a simple quadratic form.

An explicit large-deviation regime

If one restricts the ensemble of realisations to spherically symmetric configurations, one can define a set of random variables - the densities in concentric shells - for which we know the rate function and the mapping into their nonlinear values.

The collection $\left\{\delta \operatorname{lin}\left(\theta_{i}\right)\right\} 1 \leq i \leq N$ of correlated gaussian random variables obeys the LDP with rate function:

$$
I\left(\delta_{<}^{l i n}\left(\theta_{1}\right), \ldots, \delta_{<}^{l i n}\left(\theta_{N}\right)\right)=\frac{\sigma^{2}\left(\theta_{N}\right)}{2} \sum_{i j} \Xi_{i j} \delta_{<}^{l i n}\left(\theta_{i}\right) \delta_{<}^{l i n}\left(\theta_{j}\right)
$$

where $\equiv=\Sigma^{-1}$, and $\sigma^{2}(\theta N)=\Sigma N N$.

The spherical collapse: the solution for specific initial conditions (with adiab. modes)

The radius evolution

The exact non-linear mapping for spherically symmetric initial profile (for growing mode setting)

$$
\frac{\mathrm{d}^{2} R}{\mathrm{~d} t^{2}}=-\frac{G M(<R)}{R^{2}}
$$

Note that this mapping is independent on the small scale physics (with baryons, shell crossings, etc.) ;

Is it good enough for spherically symmetric observables ? Not necessarily (e.g. Zel'dovich approximation, FB, Reimberg, in prep.)

There exists a mapping which maps the initial radii into the nonlinear ones

$$
\begin{aligned}
& \delta_{<}(\vartheta)=\zeta\left(\delta_{<}^{\operatorname{lin}}(\theta)\right) \\
& \vartheta=\theta \zeta^{-1 / D}\left(\delta_{<}^{\operatorname{lin}}(\theta)\right)
\end{aligned}
$$

The scaled cumulant generating function of any functional of the nonlinear density profile is then given by,
P. Reimberg, FB, ‘I5

$$
\varphi(\lambda)=\sup _{\delta_{<}^{\operatorname{lin}}(\theta)}\left[\lambda \hat{\rho}\left\{\delta_{<}(\vartheta)\right\}-I\left(\delta_{\operatorname{lin}}\left(\theta_{1}\right), \ldots, \delta_{\operatorname{lin}}\left(\theta_{N}\right)\right]\right.
$$

$\hat{\rho}\left\{\delta_{<}(\vartheta)\right\} \quad \begin{aligned} & \text { does not have to be local, linear or defined from a } \\ & \text { discrete number of shells. }\end{aligned}$

Consequences in the context of LSS cosmology are at least 2 folds

- you do not need to impose $\delta(x)$ to be small everywhere, only the variance has to be small;
- you have a possible working procedure provided you can identify the most likely initial configuration and its probability (rate function).

Such an identification can be done for configurations with enough symmetries: in practice with spherical (or cylindrical) symmetry.

Standard result: the cumulants of the top-hat smoothed density

scaled cumulant GF is Legendre T. of rate function:

$$
\varphi(\lambda)=\lim _{\left\langle\rho^{2}\right\rangle_{c} \rightarrow 0}\left\langle\rho^{2}\right\rangle_{c} \sum_{p=1}^{\infty} \frac{\left\langle\rho^{p}\right\rangle_{c}}{p!}\left(\frac{\lambda}{\left\langle\rho^{2}\right\rangle_{c}}\right)^{p}=\lambda+\frac{\lambda^{2}}{2}+S_{3} \frac{\lambda^{3}}{3!}+\ldots
$$

Average of (combination of) tree order expression of the p-point correlation functions in spherical cells.

Expression of $S_{p}=\lim _{\left\langle\delta^{2}\right\rangle_{c} \rightarrow 0} \frac{\left\langle\delta^{p}\right\rangle_{c}}{\left\langle\delta^{2}\right\rangle_{c}^{p-1}}=$ tree order expr.

$$
\begin{aligned}
\left\langle\delta^{3}\right\rangle= & 6 \int \frac{\mathrm{~d} \mathbf{k}_{1}}{(2 \pi)^{3}} P\left(k_{1}\right) P\left(k_{2}\right) \\
& \times F_{2}\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right) W\left(k_{1} R\right) W\left(k_{2} R\right) W\left(\left|\mathbf{k}_{1}+\mathbf{k}_{2}\right| R\right) \\
\propto & \left\langle\delta^{2}\right\rangle^{2}
\end{aligned}
$$

$$
\begin{aligned}
S_{3} & =\frac{34}{7}+\gamma_{1} \\
S_{4} & =\frac{60712}{1323}+\frac{62 \gamma_{1}}{3}+\frac{7 \gamma_{1}^{2}}{3}+\frac{2 \gamma_{2}}{3} \\
S_{5} & =\frac{200575880}{305613}+\frac{1847200 \gamma_{1}}{3969}+\frac{6940 \gamma_{1}^{2}}{63}+\frac{235 \gamma_{1}^{3}}{27} \\
& +\frac{1490 \gamma_{2}}{63}+\frac{50 \gamma_{1} \gamma_{2}}{9}+\frac{10 \gamma_{3}}{27}
\end{aligned}
$$

$$
\gamma_{p}=\frac{\mathrm{d}^{p} \log \sigma^{2}\left(R_{0}\right)}{\mathrm{d} \log ^{p} R_{0}}
$$

1-cell density cumulants (FB '94)
it has a non trivial dependence on the wave vectors through the functions F3 and F2

Application 1: 1-cell PDF and stats

FB Pichon, Codis '/3
The inverse Laplace transform,

$$
\mathcal{P}\left(\hat{\rho}_{1}\right)=\int_{-\mathrm{i} \infty}^{+\mathrm{i} \infty} \frac{\mathrm{~d} \lambda_{1}}{2 \pi \mathrm{i}} \exp \left(-\lambda_{1} \hat{\rho}_{1}+\varphi\left(\lambda_{1}\right)\right)
$$

Computation of the 1-cell density PDF, LDP applied to $\mu=\log \hat{\rho}$

Uhlemann, Codis, FB, Pichon, Reimberg '/5
The general expression of the PDF

$$
\begin{aligned}
\mathcal{P}_{R, \mu}(\mu) \mathrm{d} \mu & =\int_{-i \infty}^{+i \infty} \frac{\mathrm{~d} \lambda}{2 \pi i} \exp \left[-\lambda \mu+\phi_{R, \mu}(\lambda)\right] \\
\mathcal{P}_{R}(\hat{\rho}) \mathrm{d} \hat{\rho} & =\mathcal{P}_{R, \mu}(\log (\hat{\rho})) \frac{\mathrm{d} \hat{\rho}}{\hat{\rho}}
\end{aligned}
$$

The saddle point expression

$$
\mathcal{P}_{R}(\hat{\rho})=\sqrt{\frac{\Psi_{R}^{\prime \prime}[\hat{\rho}]+\Psi_{R}^{\prime}[\hat{\rho}] / \hat{\rho}}{2 \pi}} \exp \left(-\Psi_{R}[\hat{\rho}]\right)
$$

The 2-cell probability distribution function

FB, Pichon, Codis 'I3
Uhlemann, Codis, FB, Pichon, Reimberg '/5

Choice of variables

$$
\begin{aligned}
& \mu_{1}=\log \left(r^{3} \hat{\rho}_{2}+\hat{\rho}_{1}\right), \\
& \mu_{2}=\log \left(r^{3} \hat{\rho}_{2}-\hat{\rho}_{1}\right),
\end{aligned}
$$

Saddle point expression

$$
\begin{aligned}
\mathcal{P}_{R_{1}, R_{2}}\left(\hat{\rho}_{1}, \hat{\rho}_{2}\right)= & \frac{\exp \left[-\Psi_{R_{1}, R_{2}}\left(\hat{\rho}_{1}, \hat{\rho}_{2}\right)\right]}{2 \pi} \\
& \times \sqrt{\operatorname{det}\left[\frac{\partial^{2} \Psi_{R_{1}, R_{2}}}{\partial \mu_{i} \partial \mu_{j}}\right]}\left|\operatorname{det}\left[\frac{\partial \mu_{i}}{\partial \hat{\rho}_{j}}\right]\right|
\end{aligned}
$$

From cumulant to PDFs

FB, Pichon, Codis 'I5

Figure 3. Density profiles in underdense (solid light blue), overdense (dashed purple) and all regions (dashed blue) for cells of radii $R_{1}=10 \mathrm{Mpc} / \mathrm{h}$ and $R_{2}=11 \mathrm{Mpc} / \mathrm{h}$ at redshift $z=0.97$. Predictions are successfully compared to measurements in simulations (points with error bars).

It opens the way to build constrained PDFs

Figure 11. Top panel: PDF of the slope, of the slope when the inner density is below one and of the slope when the inner density is above one. Error bars represent the error on the mean as measured in our simulation, red lines represent the numerical integration while blue lines are the log-mass saddle approximation given by equation (30). The agreement is very good for the whole range of density and slope probed by the simulation. Bottom panel: residuals of measured slope PDFs compared to the log-mass saddle approximation corresponding to the blue lines in the top panel.

A realistic Mass-aperture statistics

P. Reimberg, FB, ‘I 7

$\varphi(\lambda)=-\inf _{\delta_{<}^{\text {lin }}}\left[\lambda \mathrm{M}_{\mathrm{ap}}\left(\delta_{<}^{\operatorname{lin}}\right)+\frac{\sigma_{\mathrm{F}}^{2}}{2} \int \mathrm{~d} \theta \mathrm{~d} \theta^{\prime} \delta_{<}^{\operatorname{lin}}(\theta) \delta_{<}^{\operatorname{lin}}\left(\theta^{\prime}\right) \xi\left(\theta, \theta^{\prime}\right)\right]$
$M_{a p}=\int d^{2} \vartheta W(\vartheta) \frac{\gamma_{t}}{1-\kappa}$

- Gaussian profile
- Taking into account the fact that what we measure is the reduced shear (i.e. a nonlinear functional of the profile)

FIG. 5: The effective cumulant generating functions $\varphi_{\text {eff }}^{\kappa}$ and $\varphi_{\text {eff }}^{g}$ satisfying Eq. (51). The projection factor $w_{\text {eff }}=0.1$ is used on the $\varphi_{\text {eff }}^{g}$ data.

Towards a complete theory of cell density statistics...

FB '99, FB, Pichon, Codis, ‘I 5
Joint PDFs read in the largeseparation limit (no finite separation effects)

$$
\begin{aligned}
& \mathcal{P}\left(\left\{\hat{\rho}_{k}\right\},\left\{\hat{\rho}_{k}^{\prime}\right\} ; r_{e}\right)= \\
& \quad \mathcal{P}\left(\left\{\hat{\rho}_{k}\right\}\right) \mathcal{P}\left(\left\{\hat{\rho}_{k}^{\prime}\right\}\right)\left[1+\xi\left(r_{e}\right) b\left(\left\{\hat{\rho}_{k}\right\}\right) b\left(\left\{\hat{\rho}_{k}^{\prime}\right\}\right)\right]
\end{aligned}
$$

Figure 1. The configuration of spherical cells considered in this paper which is made of multiple sets of concentric spheres separated by distances r_{IJ}. Their respective density, $\rho_{\mathrm{I}, \mathrm{i}}$, corresponds to a set of n spheres of same radii $R_{\mathrm{I}, \mathrm{i}} \equiv R_{i}$.

Correlation of measured density probabilities in different locations

$$
\left\langle\hat{\mathcal{P}}\left(\hat{\rho}_{i}\right) \hat{\mathcal{P}}\left(\hat{\rho}_{j}\right)\right\rangle=\overline{\mathcal{P}}\left(\hat{\rho}_{i}\right) \overline{\mathcal{P}}\left(\hat{\rho}_{j}\right)\left(1+\xi b_{i} b_{j}\right)
$$

Results for the bias for the density and for the slope.

Consistency relations

$$
\begin{aligned}
\int_{0}^{\infty} \mathrm{d} \rho b(\rho) P(\rho) & =0 \\
\int_{0}^{\infty} \mathrm{d} \rho \rho b(\rho) P(\rho) & =1
\end{aligned}
$$

For the slope

A regime of large-deviation functions can be identified in LSS cosmology.

- Observables can be related to joint PDFs of the density in concentric cells but also to the cumulant generating function.

Perspectives - what are the domains of application ?:

- These calculations can be applied to 3D and projected mass maps, and to joint density of multiple tracers;
- biasing of over-dense/under-dense regions can also be computed = statistical properties of clipped regions;
- it can be applied to some non-linear transforms of the density field;
- other configuration/geometries ?

