Perturbative models for

 imaging surveys (Intrinsic alignments in theDark Energy Survey)
Jonathan Blazek
LASTRO-- EPFL

PTchat@Kyoto April 10, 2019

Outline

- "3x2" cosmology and intrinsic alignments
- Analytic modeling of IA
- Observational results and future directions
- Galaxy-galaxy lensing at smaller scales

In collaboration with:

DES Collaboration,
T. Eifler, X. Fang, C. Hirata, B. Jain, E. Krause, N. MacCrann, J. McEwen, S. Samuroff, D. Schmitz, U. Seljak, M. Troxel, Z. Vlah

Summary

" 3×2 " cosmology and intrinsic alignments

- Intrinsic shape correlations are important
arXiv: 1506.08730
- Analytic modeling of IA
- PT model analogous to bias expansion arXiv: 1504.02510, 1708.09247, 1805.02649
- Observational results and future directions
- Hints of quadratic alignments in DES Y1 arXiv: 1708.01538, 1811.06989
- Galaxy-galaxy lensing at smaller scales
- Simple "point-mass" parameter

Combining probes

DES Year 1: Elvin-Poole+ 2017; Chang+ 2018

$$
\left\langle\delta_{g} \mid \delta_{g}\right\rangle=\xi_{\mathrm{gg}} \sim b^{2} \sigma_{8}^{2} \quad\left\langle\delta_{g} \mid \gamma\right\rangle=\xi_{\mathrm{mg}} \sim b \sigma_{8}^{2} \quad\langle\gamma \mid \gamma\rangle
$$

- More statistical power, different systematics, "self-calibration"
- Also: CMB, clusters, SNe, strong lensing, RSD, $21 \mathrm{~cm} . .$.
e.g. Mandelbaum+ 2013; Krause \& Eifler 2017; DES Y1; Joudaki+ KiDS 2017

Galaxy observables: positions and shapes

$$
z=0.06
$$

$20 \mathrm{Mpc} / \mathrm{h}$

(MassiveBlack II: Khandai+ 2014; Tenneti+ 2014a,b)

Galaxy positions ("bias")

$$
z=0.06
$$

$$
\delta_{g}=\mathcal{F}[\Phi]
$$

$20 \mathrm{Mpc} / \mathrm{h}$

Galaxy positions ("bias")

$$
z=0.06
$$

$$
\delta_{g}=b_{1} \delta+b_{2} \delta^{2}+b_{s} s^{2}+\cdots
$$

$20 \mathrm{Mpc} / \mathrm{h}$

Galaxy shapes ("intrinsic alignments")

$$
z=0.06
$$

$$
\begin{aligned}
& \gamma^{\mathrm{obs}}=\gamma^{\mathrm{G}}+\epsilon_{\mathrm{n}} \\
& \left\langle\gamma_{i}^{\mathrm{obs}} \gamma_{j}^{\mathrm{obs}}\right\rangle=\left\langle\gamma_{i}^{\mathrm{G}} \gamma_{j}^{\mathrm{G}}\right\rangle
\end{aligned}
$$

Galaxy shapes ("intrinsic alignments")

$$
z=0.06
$$

$$
\begin{aligned}
& \gamma^{\mathrm{obs}}=\gamma^{\mathrm{G}}+\gamma^{\mathrm{I}}+\epsilon_{\mathrm{n}} \\
& \left\langle\gamma_{i}^{\mathrm{obs}} \gamma_{j}^{\mathrm{obs}}\right\rangle=\left\langle\gamma_{i}^{\mathrm{G}} \gamma_{j}^{\mathrm{G}}\right\rangle+\left\langle\gamma_{i}^{\mathrm{G}} \gamma_{j}^{\mathrm{I}}\right\rangle+\left\langle\gamma_{i}^{\mathrm{I}} \gamma_{j}^{\mathrm{I}}\right\rangle
\end{aligned}
$$

Galaxy shapes ("intrinsic alignments")

$$
z=0.06
$$

Euclid (Krause, Eifler, JB 2016)

Galaxy shapes ("intrinsic alignments")

$$
z=0.06
$$

$$
\gamma_{i j}^{I}=\mathcal{F}_{i j}[\Phi]
$$

Tidal alignment: collapse in a tidal field

Tidal alignment

Tidal alignment: collapse in a tidal field

$$
\gamma_{i j}^{I}=\frac{C_{1}}{4 \pi G} \nabla_{i} \nabla_{j} \Phi \sim C_{1} \nabla_{i} \nabla_{j} \nabla^{-2} \delta=C_{1} s_{i j}
$$

"NLA" model (see T. Okumura talk, T. Kurita poster)

Analytic IA models

tidal field: s

tidal alignment: linear in s
(Catelan+ 2001;
Hirata \& Seljak 2004;
JB+ 2011, 2015)
tidal torquing: quadratic in s
(e.g. Lee \& Pen 2000;

HIrata \& Seljak 2004)
hybrid/halo model
(e.g. Schneider \& Bridle 2009)

Analytic vs simulation modeling

IA in hydro sims: MassiveBlack, Illustris, Horizon-AGN, EAGLE/Cosmo-OWLS (e.g. Chisari+2016, Tenneti+ 2016, Codis+ 2018)

This is a hard problem!

Perturbative expansions for galaxy observables

galaxy bias (e.g. McDonald \& Roy 2009; Desjacques, Jeong, Schmidt 2018)

$$
\binom{\delta_{g}(x)=b_{1} \delta_{m}(x)+b_{2} \delta_{m}^{2}(x)+b_{s} s^{2}(x)+\cdots}{\left.\gamma_{i j}^{I}=C_{1}\right) s_{i j}+C_{2}\left(s_{i k} s_{k j}\right)+\overparen{C_{\delta}}\left(\delta s_{i j}\right)+C_{t} t_{i j}+\cdots}
$$

galaxy intrinsic alignments
(JB+ 2015; Schmidt+ 2015; JB+ 2017; Schmitz, Hirata, JB, Krause 2018; Z. Vlah talk)

Perturbative IA expansion

$$
\gamma_{i j}^{I}=C_{1} s_{i j}+s_{2}\left(s_{i k} s_{k j}\right)+C_{\delta}\left(\delta s_{i j}\right)+C_{t} t_{i j}+\cdots
$$

JB, Vlah, Seljak 2015
Schmidt, Chisari, Dvorkin 2015
JB, Troxel, MacCrann, Fang 2017
(arXiv:1708.09247)
Schmitz, Hirata, JB, Krause 2008

LSST-like cosmic shear

Green: no IA
Orange: NLA
Black: NLA + power-law z Purple: Full model

FFT evaluation of PT integrals

McEwen, Fang, Hirata, JB 2016; Fang, JB, McEwen, Hirata 2017 see also: Schmittfull, Vlah, McDonald 2016; Schmittfull \& Vlah 2016; Simonovic+ 2017 FAST-PT on github: JoeIMcEwen/FAST-PT

$$
\begin{gathered}
I(k)=\int \frac{d^{3} \boldsymbol{q}_{1}}{(2 \pi)^{3}} K\left(\hat{\boldsymbol{q}}_{1} \cdot \hat{\boldsymbol{q}}_{2}, \hat{\boldsymbol{q}}_{1} \cdot \hat{\boldsymbol{k}}, \hat{\boldsymbol{q}}_{2} \cdot \hat{\boldsymbol{k}}, q_{1}, q_{2}\right) P\left(q_{1}\right) P\left(q_{2}\right) \\
f(k)=\int \frac{d^{3} \boldsymbol{q}_{1}}{(2 \pi)^{3}} \mathcal{P}_{\ell}\left(\hat{\boldsymbol{q}}_{1} \cdot \hat{\boldsymbol{q}}_{2}\right) \mathcal{P}_{\ell_{1}}\left(\hat{\boldsymbol{k}} \cdot \hat{\boldsymbol{q}}_{2}\right) \mathcal{P}_{\ell_{2}}\left(\hat{\boldsymbol{k}} \cdot \hat{\boldsymbol{q}}_{1}\right) q_{1}^{\alpha} q_{2}^{\beta} P\left(q_{1}\right) P\left(q_{2}\right) \\
J_{J_{1} J_{2}}^{\alpha \beta}(r) \equiv\left[\int_{0}^{\infty} d q_{1} q_{1}^{2+\alpha} P\left(q_{1}\right) j_{J_{1}}\left(q_{1} r\right)\right]\left[\int_{0}^{\infty} d q_{2} q_{2}^{2+\beta} P\left(q_{2}\right) j_{J_{2}}\left(q_{2} r\right)\right]
\end{gathered}
$$

(e.g. FFTLLog: Talman 1978, Hamilton 2000)

- Python; easy to use and integrate into other code
- Contact us! Always adding new features

Probing IA in DES Y1

Cosmic Shear

Troxel+ 2018, DES Y1

Probing IA in DES Y1

3×2 and morphology/color split

Samuroff, JB+ 2018, DES Y1

Are these results robust?

- Degeneracy with photo-z or other systematic?
- Under-constrained parameters and degeneracies with cosmology causing shifts? (cf. E. Krause talk on nonlinear bias tests)

Are these results robust?

- Tests underway, DES Y3 appears to be sufficiently constraining

Non-locality in IA

Non-locality in IA

$$
\mathbf{x}_{\mathbf{i}}=\mathbf{x}\left(z_{i}\right)
$$

Non-locality in IA

$$
\mathrm{x}_{\mathrm{i}}=\mathrm{x}\left(z_{i}\right) \quad \text { 为 }
$$

$t_{i j} \sim \nabla_{i} \nabla_{j} \nabla^{-2}(\theta-\delta)$

$$
\mathbf{x}_{\mathbf{f}}=\mathbf{x}\left(z_{f}\right)
$$

Measuring non-locality

Schmitz, Hirata, JB, Krause 2018

$$
B_{g g I} \sim\left\langle\delta_{g}\left(k_{1}\right) \delta_{g}\left(k_{2}\right) \gamma^{I}\left(k_{3}\right)\right\rangle
$$

Signature of advection

Constrain formation time

Looking ahead in IA

- DES Y3 analysis (~4200 deg 3x area of Y1)
- Implement and analyze complete 1 loop model (cf Z. Vlah talk); pipelines for LSST and Euclid
- New hydro simulations and observational constraints (IllustrisTNG, PAU, eBOSS, DES, ...)
- IA as a probe of LSS and fundamental physics

Galaxy-galaxy lensing and

small scales

Galaxy-galaxy lensing and small scales
 MacCrann, JB, Jain, Krause 2018

Galaxy-galaxy lensing and small scales
 MacCrann, JB, Jain, Krause 2018

$$
\Sigma(R)=\bar{\rho}_{m} \int_{-\infty}^{\infty} \mathrm{d} \Pi\left[1+\xi_{g m}\left(\sqrt{R^{2}+\Pi^{2}}\right)\right]
$$

$$
\Delta \Sigma(R)=\bar{\Sigma}(0, R)-\Sigma(R)
$$

"Point mass" model

MacCrann, JB, Jain, Krause 2018
$\Sigma(R)=\bar{\rho}_{m} \int_{-\infty}^{\infty} \mathrm{d} \Pi\left[1+\xi_{g m}\left(\sqrt{R^{2}+\Pi^{2}}\right)\right]$
$\Delta \Sigma(R)=\bar{\Sigma}(0, R)-\Sigma(R)$
 cf. Annular statistics, Baldauf+ 2010; Singh+ 2018; S. Sugiyama poster

"Point mass" model

MacCrann, JB, Jain, Krause 2018

Summary

" 3×2 " cosmology and intrinsic alignments

- Intrinsic shape correlations are important
- Analytic modeling of IA
- PT model analogous to bias expansion
- Observational results and future directions
- Hints of quadratic alignments in DES Y1
- Galaxy-galaxy lensing at smaller scales
- Simple "point-mass" parameter

