Perturbative models for imaging surveys (Intrinsic alignments in the Dark Energy Survey)

> Jonathan Blazek LASTRO - EPFL

PTchat@Kyoto April 10, 2019

Outline

- "3x2" cosmology and intrinsic alignments
- Analytic modeling of IA
- Observational results and future directions
- Galaxy-galaxy lensing at smaller scales

In collaboration with: DES Collaboration,

T. Eifler, X. Fang, C. Hirata, B. Jain, E. Krause, N. MacCrann, J. McEwen, S. Samuroff, D. Schmitz, U. Seljak, M. Troxel, Z. Vlah

Summary

"3x2" cosmology and intrinsic alignments

- Intrinsic shape correlations are important arXiv: 1506.08730
- Analytic modeling of IA
 - PT model analogous to bias expansion

arXiv: 1504.02510, 1708.09247, 1805.02649

Observational results and future directions

- Hints of quadratic alignments in DES Y1 arXiv: 1708.01538, 1811.06989
- Galaxy-galaxy lensing at smaller scales
 - Simple "point-mass" parameter

arXiv: 1903.07101

Combining probes

DES Year 1: Elvin-Poole+ 2017; Chang+ 2018

- More statistical power, different systematics, "self-calibration"
- Also: CMB, clusters, SNe, strong lensing, RSD, 21cm...

e.g. Mandelbaum+ 2013; Krause & Eifler 2017; DES Y1; Joudaki+ KiDS 2017

Galaxy observables: positions and shapes

(MassiveBlack II: Khandai+ 2014; Tenneti+ 2014a,b)

Galaxy positions ("bias")

Galaxy positions ("bias")

Tidal alignment: collapse in a tidal field

Tidal alignment

Tidal alignment: collapse in a tidal field

"NLA" model (see T. Okumura talk, T. Kurita poster)

Analytic IA models

tidal alignment: linear in S (Catelan+ 2001; Hirata & Seljak 2004; JB+ 2011, 2015)

tidal torquing: quadratic in s (e.g. Lee & Pen 2000; HIrata & Seljak 2004)

hybrid/halo model (e.g. Schneider & Bridle 2009)

Analytic vs simulation modeling

IA in hydro sims: MassiveBlack, Illustris, Horizon-AGN, EAGLE/Cosmo-OWLS (e.g. Chisari+2016, Tenneti+ 2016, Codis+ 2018)

This is a hard problem!

Perturbative expansions for galaxy observables

galaxy bias (e.g. McDonald & Roy 2009; Desjacques, Jeong, Schmidt 2018)

$$\delta_{g}(x) = b_{1}\delta_{m}(x) + b_{2}\delta_{m}^{2}(x) + b_{s}s^{2}(x) + \cdots$$
$$\gamma_{ij}^{I} = C_{1}s_{ij} + C_{2}(s_{ik}s_{kj}) + C_{\delta}(\delta s_{ij}) + C_{t}t_{ij} + \cdots$$

galaxy intrinsic alignments (JB+ 2015; Schmidt+ 2015; JB+ 2017; Schmitz, Hirata, JB, Krause 2018; **Z. Vlah talk**)

FFT evaluation of PT integrals

McEwen, Fang, Hirata, JB 2016; Fang, JB, McEwen, Hirata 2017 see also: Schmittfull, Vlah, McDonald 2016; Schmittfull & Vlah 2016; Simonovic+ 2017 **FAST-PT on github: JoeMcEwen/FAST-PT**

$$I(k) = \int \frac{d^{3}q_{1}}{(2\pi)^{3}} K(\hat{q}_{1} \cdot \hat{q}_{2}, \hat{q}_{1} \cdot \hat{k}, \hat{q}_{2} \cdot \hat{k}, q_{1}, q_{2}) P(q_{1}) P(q_{2})$$

$$f(k) = \int \frac{d^{3}q_{1}}{(2\pi)^{3}} \mathcal{P}_{\ell}(\hat{q}_{1} \cdot \hat{q}_{2}) \mathcal{P}_{\ell_{1}}(\hat{k} \cdot \hat{q}_{2}) \mathcal{P}_{\ell_{2}}(\hat{k} \cdot \hat{q}_{1}) q_{1}^{\alpha} q_{2}^{\beta} P(q_{1}) P(q_{2})$$

$$\downarrow$$

$$J_{J_{1}J_{2}}^{\alpha\beta}(r) \equiv \left[\int_{0}^{\infty} dq_{1} \ q_{1}^{2+\alpha} P(q_{1}) j_{J_{1}}(q_{1}r)\right] \left[\int_{0}^{\infty} dq_{2} \ q_{2}^{2+\beta} P(q_{2}) j_{J_{2}}(q_{2}r)\right]$$
(e.g. FFTLog: Talman 1978, Hamilton 2000)

Python; easy to use and integrate into other code
Contact us! Always adding new features

Probing IA in DES Y1

Probing IA in DES Y1

3x2 and morphology/color split

Samuroff, JB+ 2018, DES Y1

Are these results robust?

- Degeneracy with photo-z or other systematic?
- Under-constrained parameters and degeneracies with cosmology causing shifts?
 (cf. E. Krause talk on nonlinear bias tests)

Are these results robust?

• Tests underway, DES Y3 appears to be sufficiently constraining

Non-locality in IA

Non-locality in IA

 $\mathbf{x_i} = \mathbf{x}(z_i)$

Non-locality in IA

Measuring non-locality

Schmitz, Hirata, JB, Krause 2018

 $B_{ggI} \sim \langle \delta_g(k_1) \delta_g(k_2) \gamma^I(k_3) \rangle$

Looking ahead in IA

- DES Y3 analysis (~4200 deg 3x area of Y1)
- Implement and analyze complete 1loop model (cf Z. Vlah talk); pipelines for LSST and Euclid
- New hydro simulations and observational constraints (IllustrisTNG, PAU, eBOSS, DES, ...)
- IA as a probe of LSS and fundamental physics

Galaxy-galaxy lensing and small scales

MacCrann, JB, Jain, Krause 2018

Galaxy-galaxy lensing and small scales

MacCrann, JB, Jain, Krause 2018

 $\Delta \Sigma(R) = \overline{\Sigma}(0, R) - \Sigma(R)$

"Point mass" model

MacCrann, JB, Jain, Krause 2018

$$\Sigma(R) = \overline{\rho}_m \int_{-\infty}^{\infty} d\Pi \left[1 + \xi_{gm} \left(\sqrt{R^2 + \Pi^2} \right) \right]$$

 $\Delta \Sigma(R) = \overline{\Sigma}(0, R) - \Sigma(R)$

$$\overline{\Sigma}(0, R) = \frac{r_{\min}^2 \overline{\Sigma}(0, r_{\min})}{R^2} + \frac{(R^2 - r_{\min}^2)\overline{\Sigma}(r_{\min}, R)}{R^2}$$
$$\Delta \Sigma(R) = \Delta \Sigma^{\text{model}}(R) + B/R^2$$
cf. Annular statistics, Baldauf+ 2010;
Singh+ 2018; S. Sugiyama poster

"Point mass" model

MacCrann, JB, Jain, Krause 2018

Summary

"3x2" cosmology and intrinsic alignments

- Intrinsic shape correlations are important
- Analytic modeling of IA
 - PT model analogous to bias expansion
- Observational results and future directions
 - Hints of quadratic alignments in DES Y1
- Galaxy-galaxy lensing at smaller scales
 - Simple "point-mass" parameter