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Summary
• “3x2” cosmology and intrinsic alignments 

• Intrinsic shape correlations are important 

• Analytic modeling of IA 
• PT model analogous to bias expansion 

• Observational results and future directions 
• Hints of quadratic alignments in DES Y1 

• Galaxy-galaxy lensing at smaller scales 
• Simple “point-mass” parameter
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Combining probes

{
“3x2” analysis

Maps and masks
• Maps built on resolution Nside = 4096, then 

masked and downgraded to 2048, the analysis 
resolution 

• Joint mask for areas of insufficient depth, as in 
Jack’s analysis 

• K map is smoothed with Gaussian of FWHM = 
5.4’: required to cut off K noise from small scales 

• ‘Fake catalogues’ also built for clustering 
measurements with treecorr (as this requires 
catalogues instead of maps) 

• Catalog item created at centre of each map 
pixel 

• Weight of each object equal to pixel value 

• Same for masks, from which fake random 
catalogues are created
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Figure 6. Pixel signal-to-noise (S/N) kE/s(kE ) maps (top) and kB/s(kB) maps (bottom) constructed from the METACALIBRATION catalog for galaxies in
the redshift range of 0.2 < z < 1.3, smoothed by a Gaussian filter of sG = 30 arcminutes. s(kE ) and s(kB) are estimated by Eq. (16).

the lower noise coming from the higher number density of source
galaxies. Structures that show up in a given map are likely to also
show up in the neighbouring redshift bins, since the mass that is
contributing to the lensing in one map is likely to also lens galaxies
in neighbouring redshift bins. This is apparent in e.g. the structures
at (RA, Dec)=(35�, -48�) and (58�, -55�). Next, we compare the
E-mode maps with their B-mode counterpart in Fig. 6 and Fig. 7.
In general, the B-mode maps have lower overall amplitudes. The
mean absolute S/N of the E-mode map is ⇠1.5 times larger than
the B-mode map at this smoothing scale. For a smoothing scale of
sG =80 arcminutes, this ratio increases to ⇠ 2. There are no sig-
nificant correlations between the E- and the B-mode maps in Fig. 6
and Fig. 7: we find that the Pearson correlation coefficients10 are all
consistent with zero, as expected for maps where systematic effects
are not dominant. Comparing the four tomographic B-mode maps

10 The Pearson correlation coefficient two maps X and Y is defined as
h(X � X̄)(Y � Ȳ )i/(sX sY ), where X̄ and Ȳ are the mean pixel values for
the two maps, the hi averages over all pixels in the map, and s indicates the
standard deviation of the pixel values in each map.

in Fig. 7, there is no obvious correlation between the structures in
one map with maps of neighboring redshift bins. We find that the
Pearson correlation coefficient between the second and third (third
and fourth) redshift bins for the B-mode maps is 8 (5.5) times lower
than that for the E-mode maps. The E and B-mode maps for the
lowest redshift bin 0.2 < z < 0.43 have similar levels of S/N, which
is expected since the lensing signal at low redshift is weak and the
noise level is high.

We now examine the second and third moments of the kE
maps similar to the tests in Sec. 5.2. For direct comparison with
simulations, the measurements are done using the map with the full
redshift range 0.2 < z < 1.3 and in the region of 0� <RA< 100�.
Our results are shown in the right panels of Fig. 4, where the mean
and standard deviation of the 12 noisy simulation results are also
overlaid.

We note that we do not expect perfect agreement between the
simulation and data for several reasons: first, the detailed shape
noise incorporated in the simulations is only an approximation to
the METACALIBRATION shape noise. In particular, there is no cor-
relation of the shape noise with other galaxy properties in our sim-
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Figure 1. Top: Snapshot of the MBII simulation in a slice of thickness 2h�1Mpc at redshift z = 0.06. The bluish-white colored region
represents the density of the dark matter distribution and the red lines show the direction of the major axis of ellipse for the projected
shape defined by the stellar component. Bottom Left: Dark matter (shown in gray) and stellar matter (shown in red) distribution in the
most massive group at z = 0.06 of mass 7.2 ⇥ 1014h�1M�. The blue and red ellipses show the projected shapes of dark matter and
stellar matter of subhalos respectively. Bottom Middle: Dark matter and stellar matter distribution in a group of mass 3.8⇥1012h�1M�.
Bottom Right: Dark matter and stellar matter distribution in a group of mass 1.1⇥ 1012h�1M�.

Iij =

P
n mnxnixnjP

n mn
, (1)

where mn represents the mass of the nth particle and
xni, xnj represent the position coordinates of the nth parti-
cle with 0 6 i, j 6 2 for 3D and 0 6 i, j 6 1 for 2D. It is to be
noted that in this simulation, all particles of the given type
(either dark matter or star particle) have the same mass.
Hence the mass of a particle has no e↵ect on the inertia ten-
sor. The inertia tensor can also be defined by weighting the

positions of particles by their luminosity instead of mass.
Schneider et al. (2012) used the definition of reduced iner-
tia tensor and investigated the radial dependance of halo
shapes in the N -body simulation by considering only parti-
cles within a given fraction of the virial radius. In this paper,
we are only concerned with the standard unweighted inertia
tensor definition for determining shapes and defer investiga-
tion of other definitions for a future study.

Consider the 3D case. Let the eigenvectors of the iner-
tia tensor be êa, êb, êc and the corresponding eigenvalues be
�a,�b,�c, where �a > �b > �c. The eigenvectors represent
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(MassiveBlack II: Khandai+ 2014; Tenneti+ 2014a,b)

Galaxy observables: 
positions and shapes
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Figure 1. Top: Snapshot of the MBII simulation in a slice of thickness 2h�1Mpc at redshift z = 0.06. The bluish-white colored region
represents the density of the dark matter distribution and the red lines show the direction of the major axis of ellipse for the projected
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most massive group at z = 0.06 of mass 7.2 ⇥ 1014h�1M�. The blue and red ellipses show the projected shapes of dark matter and
stellar matter of subhalos respectively. Bottom Middle: Dark matter and stellar matter distribution in a group of mass 3.8⇥1012h�1M�.
Bottom Right: Dark matter and stellar matter distribution in a group of mass 1.1⇥ 1012h�1M�.
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tia tensor be êa, êb, êc and the corresponding eigenvalues be
�a,�b,�c, where �a > �b > �c. The eigenvectors represent

c� 0000 RAS, MNRAS 000, 000–000

2

/
�
⌦mbg�

2
8

�2
(4)

/ b
2
g�

2
8 (5)

b
2
g (6)

�
2
8 (7)

�bg/bg (8)

�bg

bg
(9)

��8 (10)

⌦b, H0, ns, ⌧ (11)

⇠ e
� 1

2�
2

(12)

1

h�0i
h(�0 cos 2✓) �gi (13)

h(�0 cos 2✓) �gi

h(cos 2✓) �gi
=

4

⇡
h�0i (14)

hcos(2✓)�gi (15)

�+ = �0 cos 2✓ (16)

�⇥ = �0 sin 2✓ (17)

✓ (18)

�⌃IA

�⌃obs
(19)

wg+ (20)

e
�2�2

⇡
1

2
(21)

h�g|(1 + �g)�+i = b1h�|�+i+ b2h��|�+i+ b
2
1h�|��+i+ b2b1h��|��i+O(P 3

lin) (22)

b1 = 2.0, b2 = 0.5 (23)

H(z) (24)

DA(z) (25)

D
2
AH

�1 (26)

DAH (27)

P
s
g(k, µ) = (b2g + 2bgfµ

2 + f
2
µ
4)P r

m(k) (28)

f = ⌦�
m (29)

�g = F [�] ⇡ b1� + b2�
2 + · · · (30)

�g = F [�] ⇡ b1� + · · · (31)

�
I
ij = Fij [�] (32)

�g = F [�] (33)

�
I
ij = Fij [�] (34)

�(x) ⌘
⇢(x)� ⇢̄

⇢̄
(35)

(36)

PGI(k) ⇠ �C1P��(k) (37)

PII(k) ⇠ C
2
1P��(k) (38)



Galaxy positions (“bias”)4 Tenneti et al.

Figure 1. Top: Snapshot of the MBII simulation in a slice of thickness 2h�1Mpc at redshift z = 0.06. The bluish-white colored region
represents the density of the dark matter distribution and the red lines show the direction of the major axis of ellipse for the projected
shape defined by the stellar component. Bottom Left: Dark matter (shown in gray) and stellar matter (shown in red) distribution in the
most massive group at z = 0.06 of mass 7.2 ⇥ 1014h�1M�. The blue and red ellipses show the projected shapes of dark matter and
stellar matter of subhalos respectively. Bottom Middle: Dark matter and stellar matter distribution in a group of mass 3.8⇥1012h�1M�.
Bottom Right: Dark matter and stellar matter distribution in a group of mass 1.1⇥ 1012h�1M�.

Iij =

P
n mnxnixnjP

n mn
, (1)

where mn represents the mass of the nth particle and
xni, xnj represent the position coordinates of the nth parti-
cle with 0 6 i, j 6 2 for 3D and 0 6 i, j 6 1 for 2D. It is to be
noted that in this simulation, all particles of the given type
(either dark matter or star particle) have the same mass.
Hence the mass of a particle has no e↵ect on the inertia ten-
sor. The inertia tensor can also be defined by weighting the

positions of particles by their luminosity instead of mass.
Schneider et al. (2012) used the definition of reduced iner-
tia tensor and investigated the radial dependance of halo
shapes in the N -body simulation by considering only parti-
cles within a given fraction of the virial radius. In this paper,
we are only concerned with the standard unweighted inertia
tensor definition for determining shapes and defer investiga-
tion of other definitions for a future study.

Consider the 3D case. Let the eigenvectors of the iner-
tia tensor be êa, êb, êc and the corresponding eigenvalues be
�a,�b,�c, where �a > �b > �c. The eigenvectors represent

c� 0000 RAS, MNRAS 000, 000–000

2

PGI(k) ⇠ �C1P��(k) (34)

PII(k) ⇠ C
2
1P��(k) (35)

PGI(k, z) ⇠ �A(z, L)P��(k, z) (36)

PII(k, z) ⇠ A
2(z, L)P��(k, z) (37)

�g = b1� + b2�
2 + · · · (38)

�
I = C1s+ C2s

2 + · · · (39)

�g = b1� + b2�
2 + bss

2 + · · · (40)

�
I = C1s+ C2(s⇥ s) + C�(�s) + · · · (41)

�g = b1� + b2�
2 + bss

2 + bvv
2
s + · · · (42)

�
I = C1s+ C2(s⇥ s) + C�(�s) + · · · (43)

�g = b1� + b2�
2 + bss

2 + · · · (44)

�
I
ij = C1sij + C2(sikskj) + C�(�sij) + · · · (45)

�
I
ij = C1sij + C2(sikskj) + C�(�sij) + Cttij + · · · (46)

�
I
ij = CLIV(vivj) + C1sij + C2(sikskj) + C�(�sij) + Cttij + · · · (47)

(48)

h�g|�gi (49)

h�g|�i (50)

h�|�i (51)

h�g|�gi ⇠ wgg (52)

h�g|�+i ⇠ wg+ (GI) (53)

h�+|�+i ⇠ w++ (II) (54)

(55)

Ftid = @
2 Rcoll (56)

⇢coll ⇠ ⇢crit (57)

Rcoll (58)

Fcoll =
4⇡G⇢collR

3
coll

3R2
coll

(59)

� ⇠
Ftid

Fcoll
⇠

C1⇢crit

4⇡G
@
2 (60)

C
e↵
1 = C1

✓
1 +

58

105
b1�

2
S + · · ·

◆
(61)

Pmodel

Psim
� 1 (62)

�g(x) = b1�(x) +
b2

2
[�2(x)� �

2] +
bs

2
[s2(x)� hs

2
i] + · · ·

+ bv[v
2
s(q)� 1] + b1v�(x)[v

2
s(q)� 1] + bsvsij(x)vs,i(q)vs,j(q) + · · · (63)



4 Tenneti et al.

Figure 1. Top: Snapshot of the MBII simulation in a slice of thickness 2h�1Mpc at redshift z = 0.06. The bluish-white colored region
represents the density of the dark matter distribution and the red lines show the direction of the major axis of ellipse for the projected
shape defined by the stellar component. Bottom Left: Dark matter (shown in gray) and stellar matter (shown in red) distribution in the
most massive group at z = 0.06 of mass 7.2 ⇥ 1014h�1M�. The blue and red ellipses show the projected shapes of dark matter and
stellar matter of subhalos respectively. Bottom Middle: Dark matter and stellar matter distribution in a group of mass 3.8⇥1012h�1M�.
Bottom Right: Dark matter and stellar matter distribution in a group of mass 1.1⇥ 1012h�1M�.
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shapes in the N -body simulation by considering only parti-
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Figure 1. Top: Snapshot of the MBII simulation in a slice of thickness 2h�1Mpc at redshift z = 0.06. The bluish-white colored region
represents the density of the dark matter distribution and the red lines show the direction of the major axis of ellipse for the projected
shape defined by the stellar component. Bottom Left: Dark matter (shown in gray) and stellar matter (shown in red) distribution in the
most massive group at z = 0.06 of mass 7.2 ⇥ 1014h�1M�. The blue and red ellipses show the projected shapes of dark matter and
stellar matter of subhalos respectively. Bottom Middle: Dark matter and stellar matter distribution in a group of mass 3.8⇥1012h�1M�.
Bottom Right: Dark matter and stellar matter distribution in a group of mass 1.1⇥ 1012h�1M�.
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Analytic IA models
tidal field: s

hybrid/halo 
model 

(e.g. Schneider & Bridle 2009)

tidal alignment: 
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Analytic vs simulation modeling
IA in hydro sims: MassiveBlack, Illustris, Horizon-AGN, EAGLE/Cosmo-OWLS 

(e.g. Chisari+2016, Tenneti+ 2016, Codis+ 2018)Intrinsic Alignments 9

Figure 7. Comparison of the ED correlation of the orientation of disk galaxies with the location of ellipticals in MBII, Illustris, and
Horizon-AGN simulations (Chisari et al. 2015). In the right panel, the ED correlation in MBII is compared using various definitions of
the disk galaxy sample.

Figure 8. Normalized histogram of the axis ratios (left: q, right: s) of 3D shapes of elliptical and disk galaxies in MBII and Illustris in
the stellar mass bin 109–1010.5h�1M�.

Table 4. Mean misalignment angles in 3D, h✓i (degrees), of disks and elliptical galaxies in Illustris and MBII.

M⇤ (h�1M�) Illustris MBII

Disks Ellipticals Disks Ellipticals

109 � 1010.5 44.61± 0.40� 45.13± 0.18� 41.42± 0.68� 31.01± 0.11�

1010.5 � 1012 46.46± 0.74� 36.68± 0.75� 36.85± 2.07� 25.85± 0.47�

MNRAS 000, 000–000 (0000)

This is a hard problem!

Tenneti+ 2016



Perturbative expansions for galaxy 
observables

galaxy bias (e.g. McDonald & Roy 2009; Desjacques, Jeong, Schmidt 2018)

galaxy intrinsic alignments 
(JB+ 2015; Schmidt+ 2015; JB+ 2017; Schmitz, Hirata, JB, Krause 2018; Z. Vlah talk)
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FIG. 3. Constraints on cosmological and intrinsic alignment parameters for an idealized LSST-like cosmic shear survey. Dashed
lines indicate the input parameter values used to create the data vectors. Green outlined contours use a data vector and model
without intrinsic alignment contributions, case (i). The orange outlined contour uses a data vector with contamination by the
full intrinsic alignment model, with fiducial amplitudes (see Sec. IVB), but uses a model which assumes the NLA model for the
intrinsic alignment contribution, case (ii). The black contour is the same as the orange, except the model also includes a free
power law in redshift, case (iii). The purple contour uses the same data vector as orange and black, but uses the full intrinsic
alignment modeling, thereby recovering unbiased parameter constraints, case (iv).

The recent weak lensing analysis of DES Year 1 data [18] applied this model and found indications for non-zero
values of both C1 and C2, respectively at the 82% and 84% confidence levels. Using this more flexible IA model caused
a non-trivial shift in the recovered cosmological parameters, although they caution that further study is required to
understand this result. This model will also provide a valuable tool in “combined probe” analyses that use both weak

Perturbative IA expansion

– 3 –

PGI(k) ∼ −C1Pδδ(k) (31)

PII(k) ∼ C2
1Pδδ(k) (32)

PGI(k, z) ∼ −A(z, L)Pδδ(k, z) (33)

PII(k, z) ∼ A2(z, L)Pδδ(k, z) (34)

δg = b1δ + b2δ
2 + · · · (35)

γI = C1s+ C2s
2 + · · · (36)

δg = b1δ + b2δ
2 + bss

2 + · · · (37)

γI = C1s+ C2(s× s) + Cδ(δs) + · · · (38)

δg = b1δ + b2δ
2 + bss

2 + bvv
2
s + · · · (39)

γI = C1s+ C2(s× s) + Cδ(δs) + · · · (40)

δg = b1δ + b2δ
2 + bss

2 + · · · (41)

γI
ij = C1sij + C2(sikskj) + Cδ(δsij) + · · · (42)

γI
ij = C1sij + C2(sikskj) + Cδ(δsij) + Cttij + · · · (43)

(44)

⟨δg|δg⟩ (45)

⟨δg|γ⟩ (46)

⟨γ|γ⟩ (47)

⟨δg|δg⟩ ∼ wgg (48)

⟨δg|γ+⟩ ∼ wg+ (GI) (49)

⟨γ+|γ+⟩ ∼ w++ (II) (50)

(51)

JB, Vlah, Seljak 2015 
Schmidt, Chisari, Dvorkin 2015 
JB, Troxel, MacCrann, Fang 2017 

(arXiv:1708.09247) 
Schmitz, Hirata, JB, Krause 2008

LSST-like cosmic shear 
Green: no IA 
Orange: NLA 
Black: NLA + power-law z 
Purple: Full model



FFT evaluation of PT integrals 
McEwen, Fang, Hirata, JB 2016; Fang, JB, McEwen, Hirata 2017 

see also: Schmittfull, Vlah, McDonald 2016; Schmittfull & Vlah 2016; Simonovic+ 2017 
FAST-PT on github: JoeMcEwen/FAST-PT

1 Introduction

Observational cosmology has entered a new era of precision measurement. Current and up-
coming surveys [1–5] are enabling us to probe large-scale structure in more detail and over
larger volumes, and hence to better constrain the underlying cosmological model. A parallel
effort is underway to understand the astrophysical effects that are both signals and contami-
nants in these measurements. For example, weak gravitational lensing has become a powerful
and direct probe of the dark matter distribution [6, 7], but it also suffers from systematic
uncertainties, such as galaxy intrinsic alignments (IA), which must be mitigated in order
to make use of high-precision measurements. Similarly, connecting observable tracers (e.g.
in spectroscopic surveys) with the underlying dark matter requires a description of the bias
relationship [8–12] and the effect of redshift-space distortions (RSDs) [13–15]. Developments
in CMB measurements provide another illustration, as the range of observables has expanded
from early initial detections of temperature anisotropies by COBE [16–24]. Current and fu-
ture measurements [25–30] will be able to investigate more subtle effects, such as the kinetic
Sunyaev-Zel’dovich (kSZ) [31, 32] and CMB spectral distortions [33, 34].

While modern cosmology has advanced significantly using our understanding from linear
perturbation theory, nonlinear contributions become significant at late times and at smaller
scales. In the quasi-linear regime, many relevant cosmological observables are usefully de-
scribed using perturbation theory at higher order. Significant effort has been devoted to
understanding structure formation via a range of perturbative techniques (e.g. [35–45]). In
this work, we consider integrals in standard perturbation theory (SPT), although the methods
and code we develop have a broader range of applications.

The next-to-leading-order (“1-loop”) corrections in these perturbative expansions are typ-
ically expressed as two-dimensional mode-coupling convolution integrals, which are generically
time consuming to evaluate numerically. Recent algorithmic developments have dramatically
sped up these computations for scalar quantities – those with no dependence on the direction
of the observer, such as the matter density or real-space galaxy density. The new algorithms
[46, 47] take advantage of the locality of evolution in perturbation theory, the scale invariance
of cold dark matter (CDM) structure formation, and the Fast Fourier Transform (FFT); and
work is underway to apply them to 2-loop power spectra as well [48]. In a previous paper, we
introduced the FAST-PT implementation of these methods in Python [46].

However, there are many interesting 1-loop convolution integrals for tensor quantities –
those with explicit dependence on the observer line of sight, such as those arising for redshift-
space distortions. In this case, we need convolution integrals with “tensor” kernels:1

I(k) =

Z
d
3q1

(2⇡)3
K(q̂1 · q̂2, q̂1 · k̂, q̂2 · k̂, q1, q2)P (q1)P (q2) , (1.1)

where K(q̂1 · q̂2, q̂1 · k̂, q̂2 · k̂, q1, q2) is a tensor mode-coupling kernel, k = q1 + q2, k = |k|,
and P (q) is the input signal – typically the linear matter power spectrum – logarithmically
sampled in q. Due to the dependence on the direction of k, the decomposition of these kernels
is more complicated than in the scalar case. In this work, we generalize our FAST-PT algorithm

1The kernel K can be expressed as a sum of polynomials in the relevant dot products. “Tensor” refers
to the general transformation properties of the cosmological quantities being considered under a symmetry
operation – in this case, rotations in SO(3). For instance, the momentum density is a rank 1 tensor (a vector)
while the IA field is a rank 2 tensor. The scalar case (rank 0) considered in [46] is thus a specific application
of this more general framework.
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to evaluate these tensor convolution integrals, achieving O(N log N) performance as in the
scalar case.

This paper is organized as follows: in §2 we provide the mathematical basis for our
method (§2.1), introduce our algorithm (§2.2), and discuss divergences that may arise and
how they are resolved (§2.3). In section §3 we apply our method to several examples: the
quadratic intrinsic alignment model (§3.1); the Ostriker-Vishniac effect (§3.2); the kinetic
polarization of CMB (§3.3); and the 1-loop redshift-space power spectrum (§3.4). Section
§4 summarizes the results. An appendix contains derivations of the relevant mathematical
identities. The Python code implementing this algorithm and the examples presented in this
paper is publicly available at https://github.com/JoeMcEwen/FAST-PT.

2 Method

In this section we extend the FAST-PT framework to include the computation of convolution
integrals with tensor kernels in the form of Eq. (1.1)

Our approach is similar to the scalar version of FAST-PT. We first expand the kernel into
several Legendre polynomial products – the explicit dependence on the direction k̂ requires
an expansion in three angles rather than one. Second, products of Legendre polynomials are
written in spherical harmonics using the addition theorem, where the required combinations of
spherical harmonics are constrained by Wigner 3j symbols and preserve angular momentum.
Third, the integral of each term in the expansion can be further transformed into a product
of several one-dimensional integrals in configuration space, which can be quickly performed
by assuming a (biased) log-periodic power spectrum and employing FFTs.

We will first provide the theory in §2.1 and then briefly introduce our algorithm in §2.2.
Finally, in §2.3 we will discuss physical divergence problems that can arise and the way to
solve them through the choice of appropriate biasing of the log-periodic power spectrum.

2.1 Transformation To 1D Integrals

In general, the kernel function K can be decomposed as a summation of terms

K(q̂1 · q̂2, q̂1 · k̂, q̂2 · k̂, q1, q2) =
X

`1,`2,`,↵,�

A
↵�
`1`2`

P`(q̂1 · q̂2)P`1(k̂ · q̂2)P`2(k̂ · q̂1)q
↵
1 q

�
2 , (2.1)

where P` are the Legendre polynomials, and the A
↵�
`1`2`

coefficients specify the components
of a particular kernel. For general angular dependences the sum may require an infinite
number of terms. However the kernels that appear in CDM perturbation theory and galaxy
biasing theory are composed of a finite number of terms in a polynomial expansion. This
decomposition leads us to consider integrals of the form

f(k) =

Z
d
3q1

(2⇡)3
P`(q̂1 · q̂2)P`1(k̂ · q̂2)P`2(k̂ · q̂1)q

↵
1 q

�
2P (q1)P (q2) . (2.2)

The product of Legendre polynomials can be decomposed into spherical harmonics by
the addition theorem. Using the result presented in Appendix B.1, we can write the product
of three Legendre polynomials in terms of spherical harmonics and Wigner 3j symbols:

P`(q̂1 · q̂2)P`2(q̂1 · k̂)P`1(q̂2 · k̂)

=
X

J1,J2,Jk

C
J1J2Jk
`1`2`

X

M1,M2,Mk

YJ1M1
(q̂1)YJ2M2

(q̂2)YJkMk
(k̂)

✓
J1 J2 Jk

M1 M2 Mk

◆
, (2.3)
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where

aJ1J2Jk
⌘

s
(2J1 + 1)(2J2 + 1)

4⇡(2Jk + 1)

✓
J1 J2 Jk

0 0 0

◆
. (2.11)

The derivation of Eqs. (2.10) and (2.11) is provided in Appendix (B.2). Fourier transforming
back to k-space, we obtain

T
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Z
d
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(r)jJk(kr)Y ⇤
JkMk

(k̂) , (2.12)

where in the third equality we have used the plane wave expansion (Eq. A.5), and in the fourth
equality used the orthogonality relation between spherical harmonics (Eq. A.3). Combining
the results from Eq. (2.9), (2.12), (2.11), we arrive at

I
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where J1 + J2 + Jk must be even for the 3j symbol to be non-zero, and J
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Combining Eq. (2.13) and (2.3) we can rewrite the integral (2.2) as
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• Python; easy to use and integrate into other code 
• Contact us! Always adding new features

(e.g. FFTLog: Talman 1978, Hamilton 2000)
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the recovered value of A, the amplitude of the tidal alignment
(TA) model as a function of redshift in the four models consid-
ered in this analysis. For the mixed alignment model, we also
show the constraint on A2, the amplitude of the tidal torquing
(TT) component of the model. Note that subscripts are used
with the amplitudes in the mixed alignment case and that A1

corresponds to the fiducial A parameter. We find good agree-
ment in the TA amplitude between all four models, including
the mixed alignment case, where the contributions from TT
terms appear largely independent from the TA amplitude. For
the fiducial IA model and the mixed alignment model, which
have a smooth functional form with redshift, we derive the
amplitude at the mean redshifts of each redshift bin and report
this value and its uncertainty. This analysis provides a sig-
nificant improvement in IA constraining power compared to
previous analyses, with detection of nonzero A = 1.0 at the
89% CL when allowing a power-law redshift scaling, which
is comparable to that when assuming a fixed ⌘. The fiducial
power-law ⌘ = 2.8 is constrained to be non-zero at the 83%
CL. In the mixed model, A1 = 0.9 is still constrained to be
non-zero at 83% CL with ⌘1 = 2.3 constrained to be posi-
tive at the 79% CL. The tidal torque amplitude A2 = �0.9
is nonzero at the 84% CL, with a negative amplitude, and
power-law ⌘2 = 0.4, which is consistent with zero at 1�. As
discussed in [133], the sign convention for A1 and A2 is such
that positive values correspond to galaxy alignment towards
overdense regions and thus a negative GI term.

The measured fiducial IA amplitude is in agreement with
our prediction of A ⇡ 0.5 at zpiv = 0.62, obtained from ex-
trapolating IA amplitude scalings calibrated on galaxies that
are significantly more luminous than our lensing sample [58].
This prediction assumes that only red/elliptical galaxies con-
tribute to the fiducial IA signal and accounts for the approx-
imate red fraction of the source sample. Our analysis thus
provides significant improvement in constraining the IA sig-
nal in weak lensing measurements. Moreover, it is the first
indication of nonlinear alignment mechanisms, such as tidal
torquing, in a general weak lensing sample. Previous weak
lensing studies (e.g., [32, 34]) did not account for the po-
tential presence of these higher-order effects, while spectro-
scopic alignment studies on blue/spiral galaxies have placed
comparatively weak constraints on these contributions (e.g.,
[132]). Recent hydrodynamic simulations have also exam-
ined the expected alignment of both disk and elliptical galax-
ies (e.g., [147–149]). These simulations consistently find an
overall alignment towards overdense regions, dominated by
elliptical galaxies, in agreement with the sign of our measured
A. However, they disagree on the IA behavior of spiral galax-
ies (as well as other kinematic properties), with [147] find-
ing tangential alignment of the major axis with overdensities,
consistent with our tentative measurement of A2, while others
find radial alignment (see [148] for a comparison). Improved
observational data and hydrodynamic simulations, along with
advances in analytic modeling, will clarify this issue. Finally,
we note that our inferred redshift evolution of IA, character-
ized by ⌘ or the per-bin amplitudes Ai, captures both the true
underlying redshift evolution as well as the luminosity and
galaxy-type dependence of IA, since these properties of the
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FIG. 16. The constraint on the intrinsic alignment amplitude A as a
function of redshift in the four models considered. For all models,
we show A1, the amplitude of the tidal alignment (TA) model, while
for the mixed alignment model, we also show the constraint on A2,
the amplitude of the tidal torquing (TT) component of the model.
We find good agreement between the redshift evolution of the tidal
alignment amplitude in the four models.

source sample evolve with redshift. Moreover, the IA redshift
evolution is partially degenerate with the assumed source red-
shift distribution, and thus ⌘ could absorb contributions both
from IA and systematics in the source n(z).

X. CONCLUSIONS

We have used 26 million galaxies from Dark Energy Sur-
vey (DES Y1) shape catalogs over 1321 deg2 of the southern
sky to produce the most significant measurement of cosmic
shear in a galaxy survey to date. We constrain cosmologi-
cal parameters in both the ⇤CDM and wCDM models, while
also varying the neutrino mass density. We find a 3.5% frac-
tional uncertainty on S8 = 0.782+0.027

�0.027 at 68% CL, which is
a factor of 3 improvement over the constraining power of our
SV results [61]. In wCDM, we find a 4.8% fractional uncer-
tainty on S8 = 0.777+0.036

�0.038 and w = �0.95+0.33
�0.39. We find

no evidence preferring a model allowing w 6= �1 using cos-
mic shear alone, and no constraint beyond our prior on the
neutrino mass density.

Our constraints from cosmic shear agree incredibly well
with previous cosmic shear results from KiDS-450 (and DES
SV). Despite significant discussion in previous literature, we
find no evidence that any of the cosmic shear results from DES
or KiDS analyzed here are in disagreement with CMB data
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E. Intrinsic Alignment Modeling

Unlike for astrophysical contaminants like the impact of
baryonic effects, intrinsic alignment (IA) impacts the mea-
sured signal at all scales. In addition to the fiducial intrinsic
alignment model, we also consider several variants to test the
robustness of our results with respect to the choice of intrin-
sic alignment model over which we marginalize. These in-
clude: 1) fixing the power-law redshift scaling of the fiducial
model to have ⌘ = 0, leaving a single-parameter (A) model;
2) removing the power-law dependence of redshift evolution
to marginalize over four free amplitudes in each redshift bin
(Ai); 3) allowing for both tidal alignment and tidal torquing
alignment amplitudes (‘mixed’ model, [133]). Note that the
mixed model includes IA B-mode contributions, which are
incorporated through P ! PE ± PB in Eq. 5. This model
also has mild dependence on the source galaxy bias, which
we assume to be 1. Fig. 15 shows constraints in ⇤CDM
and wCDM for the fiducial model (NLA + z-power law –
gray contours), compared to the single-parameter NLA model
(green contours), the NLA model with a free amplitude in
each tomographic bin (orange contours), and the mixed align-
ment model (blue contours). There is no significant differ-
ence in inferred cosmology between these models in ⇤CDM.
In wCDM, the mixed alignment model, which includes align-
ment due to nonlinear effects in the tidal field, including tidal
torquing, does cause a clearly non-negligible shift in inferred
parameters.

We caution against concluding that the fiducial results pre-
sented here are biased due to the shift in cosmology observed
in Fig. 15 when using the mixed alignment model, however,
because we have seen similar trends to lower S8 and ⌦m in
less constraining data sets when marginalizing over too flex-
ible an intrinsic alignment model. For example, the DES SV
(and to a lesser degree IM3SHAPE) result in Fig. 12 (see also
IA discussion in [32]), shows a similar trend toward this area
of parameter space with even the fiducial IA model in this
work, which disappears with our more constraining DES Y1
data. We further see much less significant an impact on cos-
mology in the full combined clustering and weak lensing anal-
ysis when injecting a tidal torque signal of greater amplitude
than we find here into a pure lensing signal [58]. It is also
worth noting that there is no significant difference in �

2 or
Bayesian evidence whether we include or not the tidal torque
contribution of the mixed alignment model. We thus conclude
that while this is an interesting result, it requires further ex-
ploration that we defer to a future work. Nevertheless, this
result highlights the importance of considering the impact of
IA models beyond the tidal alignment (linear) paradigm in fu-
ture cosmic shear studies, and it may indicate a real bias in
cosmic shear at our statistical precision when using the fidu-
cial tidal alignment model. A more conclusive answer for this
question will require more constraining data, which we are an-
alyzing with DES Y3+ results, or better external priors on the
amplitude of the tidal torquing component (and orientation).

Given the constraining power of the DES Y1 analysis, it is
clear that we can learn not just about cosmology, but also in-
teresting astrophysical effects like IA. In Fig. 16 we compare
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FIG. 15. A comparison of the impact of different intrinsic align-
ment (IA) models on ⇤CDM and wCDM constraints in the S8 – ⌦m

plane. The fiducial model (NLA + z-power law – gray contours), is
compared to the single-parameter NLA model (green contours), the
NLA model with a free amplitude in each tomographic bin (orange
contours), and the mixed alignment model (blue contours). There
is no significant difference in inferred cosmology between the first
three models, which are well-tested and have been implemented in
the literature before. The mixed alignment model, which includes
alignment due to tidal torquing (or other nonlinear contributions),
does cause a non-negligible shift in inferred parameters in wCDM,
which is discussed further in Sec. IX E. Both 68% and 95% confi-
dence levels are shown.
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Figure 8. Joint constraints on cosmology and a single NLA model intrinsic alignment amplitude from subpopulations of the DES Y1 fiducial shear catalogue.
The two sets of confidence contours are defined by a split according to best-fitting SED, roughly corresponding to early (red) and late (blue) type galaxies.

reduces the signal-to-noise of the IA contribution (in the limit
AIA ! 0 one has no ability to constrain ⌘IA), resulting in an ex-
pansion of the uncertainty on ⌘IA.

Under this model all our results are consistent with zero align-
ments in late-type galaxies at any redshift. In contrast, the IA con-
straints from the early-type sample are inconsistent with zero at the
level of ⇠ 2� with cosmic shear alone and ⇠ 6.6� with the full
3 ⇥ 2pt data. We also find marginal (⇠ 1�) evidence of redshift
evolution, with negative ⌘IA resulting in a signal that diminishes at
high redshifts. Though we are the first to report a marginal detection
on redshift evolving IAs in a red galaxy sample, direct comparison
with previous null detections (e.g. Hirata et al. 2007, Joachimi et al.
2011) are complicated by a basic difference in analysis method.
Unlike those studies, we do not explicitly model luminosity depen-
dence in equation 15. The index ⌘IA should thus be interpreted as
an effective parameter, which absorbs both genuine evolution of the
IA contamination in the same galaxies and the changing composi-
tion of the sample along the line of sight.

Considering the final two columns in Table 5, we see a sight
improvement in the �

2 of the NLA fit to the early-type sample,
relative to a case with AIA = 0. More noticeably, the Bayes fac-
tor appears to strongly disfavour the reduced model in this sample.
Though the ��

2 is close to zero, perhaps unsurprisingly, the Bayes
factors appear to favour the unmarginalised zero alignment scenario
in the late-type sample.

5.2 Robustness to Systematic Errors

In this sub-section we seek to demonstrate that our results do, in
fact, provide meaningful information about IAs and are not the re-
sult of residual systematic errors in our analysis pipeline.

5.2.1 Shape of the Redshift Distributions

Though it has been shown (Troxel et al. 2017) that DES Y1 shear-
only cosmology constraints are insensitive to the precise shape of
the redshift distributions, this is not trivially true for IA constraints
from sub-divisions of the data. The kernels entering the IA spec-
tra differ significantly from those in cosmic shear alone; it is not
inconceivable that the favoured IA parameters derived from these
spectra are more sensitive to the details of the n(z) shape than the

Figure 9. The impact of colour leakage on our fiducial results. The dashed
red and dot-dashed blue lines show the baseline �� and �� + �g� + �g�g
NLA results for the early-type sample. These are identical to the red dashed
and solid lines in Figure 8. The filled pink (dotted) and purple (solid)
contours show the equivalent constraints in this parameter space when all
two-point correlations involving the lowest lensing redshift bin, which was
found to exhibit potentially strong galaxy type cross-contamination, are ex-
cluded.

cosmological parameters. To test this we rerun our six fiducial anal-
ysis chains, replacing the smooth PDFs obtained from BPZ with
histograms of COSMOS redshifts (shown in Figure 4). Since the
means of the two sets of distributions per redshift bin are the same
by construction, the comparison gives us an estimate for how far
reasonable changes to the shape of the n(z) might impact upon our
results. The constraints from this test are not shown, but we find
only minor changes in the contour size, position and shape for each
sample.

5.2.2 Colour Leakage

The previous test offers some reassurance that our photo-z error
parameterisation is sufficient. It does not, however, say anything

MNRAS 000, 000–000 (0000)
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Figure 13. Constraints on cosmological and TATT model parameters in a ⇤CDM cosmology using the full Y1 sample. The upper row shows constraints from
cosmic shear alone, and the lower shows the joint constraint using the full 3⇥2pt datavector. As labelled, we show the baseline NLA constraint (purple filled),
the TATT model (blue dotted), and the result using the TATT power spectra, but also marginalising over redshift dependent scaling parameters ⌘1 and ⌘2 (pink
dashed).

result of an overly flexible model for the constraining power of the
data.

Finally in this section, we fit a more flexible version of the
TATT model, with a parametrised redshift dependence governed
by the additional free parameters ⌘1 and ⌘2. As above, we fit each
of the early-type, late-type and mixed samples separately. The re-
sults can be seen in Figure 12 (black unfilled) and Figure 7 (dashed
pink). Note that the cosmic shear TATT + z power law analysis
of the mixed sample is almost9 identical to the “Mixed Model”
constraints presented by Troxel et al. (2017). In the mixed galaxy
sample we find

A
mixed
1 = 0.70+0.21

�0.19, A
mixed
2 = �1.36+0.54

�0.70. (27)

9 For consistency with the other analyses in this paper, we use photo-z
priors derived from a resampled COSMOS sample, whereas Troxel et al.
(2017) use a combination of COSMOS and clustering cross correlations.
The difference, however, is small and will not change the conclusions pre-
sented here.

For early-types we obtain the marginalised mean alignment ampli-
tudes

A
early
1 = 2.17+0.40

�0.38, A
early
2 = �0.57+2.58

�2.60, (28)

and for late-type galaxies

A
late
1 = 0.14+0.25

�0.27, A
late
2 = �0.66+1.88

�1.86. (29)

Our results are, again, consistent with the tidal alignment only
paradigm for early-type galaxies, and the best-fitting value of the
A1 amplitude is consistent with the alignment amplitude obtained
using the NLA model.

A number of notable differences become apparent when the
IA signal is allowed to vary with redshift. First, with ⌘2 free, the
favoured A2 in all samples are shifted upwards to slightly less neg-
ative values. This is seen most strikingly in the mixed sample (com-
pare the purple and black solid isopleths in Figure 12). The shift re-
sults from the crescent-shaped degeneracy seen in the middle panel
in Figure 12; fixing ⌘2 = 0 forces A2 downwards to compensate,
but it appears that A2 is not sufficiently degenerate with S8 for this
to translate into a shift in cosmology. Notably there is no region of
this parameter space in which either A2 > 0 or ⌘2 > 0 is favoured.
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Figure 11. Joint constraints on the amplitudes of the IA spectrum in four
tomographic bins for the �� + �g� + �g�g combination. In each case, the
red dashed contours show early-type galaxies, the dot-dashed blue show
late-types and the shaded contours show the mixed Y1 cosmology sample.

see Table 1 for reference), this model allows for no explicit redshift
evolution, with both the indices ⌘1 and ⌘2 in equations 17 and 18
fixed to zero. We show the resulting split-sample IA constraints in
the upper panal of Figure 12 (filled red/blue contours). The equiva-
lent parameter fits using the unsplit Y1 shape catalogue are shown
in Figure 13 (filled dark blue).

There are a number of points worth remarking on here. First,
the best fitting A1 values are consistent with those from the NLA
fits previously, with A1 ⇠ 2.5 for early-types and A1 ⇠ 0 for
late-types. In the split colour samples we report no statistically sig-
nificant constraint detection of non-zero A2. The mixed Y1 sample,
by contrast, favours a negative A2 amplitude at the level of several
�. Interestingly, the comparison in Figure 13 also suggests that the
constraint is driven by the cosmic shear data (compare the dark blue
contours in the upper and lower right-hand panels).

The standard physical interpretation of non-zero A2 is as an
IA contribution due to tidal torquing. Under the sign convention
in equation 18, A2 < 0 implies intrinsic shapes of galaxies are
oriented tangentially relative to matter overdensities. This picture
is consistent with recent results from hydrodynamical simulations
(Chisari et al. 2015), although it is worth bearing in mind that there
is still disagreement between simulations (e.g. Hilbert et al. 2017
and Tenneti et al. 2016 report null detections of a GI correlation
in disc galaxies in the Illustris and MassiveBlack-II simulations re-
spectively). There are a number of other facts to note here, however.
As ever, mapping IA parameter constraints onto physical processes
is non-trivial, as they can very easily absorb features in the data due
to residual systematics. We also re-iterate that, even in the absence
of systematics, possible non-zero values of both A1 and A2 in the
late-type and mixed samples are not straightforward to interpret.
As mentioned above, even in a pure TT scenario, the presence of
A2 6= 0 can generate an effective non-zero A1 amplitude.

We also note that, as in Troxel et al. (2017), the best fitting S8

using the TATT model is shifted down slightly relative to the NLA
fits; this shift is seen to persist in the full 3 ⇥ 2pt combination.
We echo Troxel et al. (2017), however, in warning that this is not
necessarily a sign of bias in the NLA results, but could also be a

Figure 12. Joint constraints on tidal alignment and tidal torque amplitudes
in the TATT model. The three sets of filled contours (dotted red, dashed
blue and solid purple) show the results of fitting the baseline TATT model
to each of the fiducial early-type, late-type and mixed samples used in this
analysis. The unfilled black contours show the same, but with additional
power laws in redshift ⌘1 and ⌘2, which are also marginalised.
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E. Intrinsic Alignment Modeling

Unlike for astrophysical contaminants like the impact of
baryonic effects, intrinsic alignment (IA) impacts the mea-
sured signal at all scales. In addition to the fiducial intrinsic
alignment model, we also consider several variants to test the
robustness of our results with respect to the choice of intrin-
sic alignment model over which we marginalize. These in-
clude: 1) fixing the power-law redshift scaling of the fiducial
model to have ⌘ = 0, leaving a single-parameter (A) model;
2) removing the power-law dependence of redshift evolution
to marginalize over four free amplitudes in each redshift bin
(Ai); 3) allowing for both tidal alignment and tidal torquing
alignment amplitudes (‘mixed’ model, [133]). Note that the
mixed model includes IA B-mode contributions, which are
incorporated through P ! PE ± PB in Eq. 5. This model
also has mild dependence on the source galaxy bias, which
we assume to be 1. Fig. 15 shows constraints in ⇤CDM
and wCDM for the fiducial model (NLA + z-power law –
gray contours), compared to the single-parameter NLA model
(green contours), the NLA model with a free amplitude in
each tomographic bin (orange contours), and the mixed align-
ment model (blue contours). There is no significant differ-
ence in inferred cosmology between these models in ⇤CDM.
In wCDM, the mixed alignment model, which includes align-
ment due to nonlinear effects in the tidal field, including tidal
torquing, does cause a clearly non-negligible shift in inferred
parameters.

We caution against concluding that the fiducial results pre-
sented here are biased due to the shift in cosmology observed
in Fig. 15 when using the mixed alignment model, however,
because we have seen similar trends to lower S8 and ⌦m in
less constraining data sets when marginalizing over too flex-
ible an intrinsic alignment model. For example, the DES SV
(and to a lesser degree IM3SHAPE) result in Fig. 12 (see also
IA discussion in [32]), shows a similar trend toward this area
of parameter space with even the fiducial IA model in this
work, which disappears with our more constraining DES Y1
data. We further see much less significant an impact on cos-
mology in the full combined clustering and weak lensing anal-
ysis when injecting a tidal torque signal of greater amplitude
than we find here into a pure lensing signal [58]. It is also
worth noting that there is no significant difference in �

2 or
Bayesian evidence whether we include or not the tidal torque
contribution of the mixed alignment model. We thus conclude
that while this is an interesting result, it requires further ex-
ploration that we defer to a future work. Nevertheless, this
result highlights the importance of considering the impact of
IA models beyond the tidal alignment (linear) paradigm in fu-
ture cosmic shear studies, and it may indicate a real bias in
cosmic shear at our statistical precision when using the fidu-
cial tidal alignment model. A more conclusive answer for this
question will require more constraining data, which we are an-
alyzing with DES Y3+ results, or better external priors on the
amplitude of the tidal torquing component (and orientation).

Given the constraining power of the DES Y1 analysis, it is
clear that we can learn not just about cosmology, but also in-
teresting astrophysical effects like IA. In Fig. 16 we compare
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FIG. 15. A comparison of the impact of different intrinsic align-
ment (IA) models on ⇤CDM and wCDM constraints in the S8 – ⌦m

plane. The fiducial model (NLA + z-power law – gray contours), is
compared to the single-parameter NLA model (green contours), the
NLA model with a free amplitude in each tomographic bin (orange
contours), and the mixed alignment model (blue contours). There
is no significant difference in inferred cosmology between the first
three models, which are well-tested and have been implemented in
the literature before. The mixed alignment model, which includes
alignment due to tidal torquing (or other nonlinear contributions),
does cause a non-negligible shift in inferred parameters in wCDM,
which is discussed further in Sec. IX E. Both 68% and 95% confi-
dence levels are shown.
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• Tests underway, DES Y3 appears to be sufficiently constraining
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Measuring non-locality

Figure 4. The evolution of ct with z for varying values of zIA from 2 to 8, assuming that ct(zIA) = 0
and that IA passively evolves. The black dashed lines are located at z = 0.49 and z = 0.771, the
effective redshifts of the combined BOSS sample and the DESI LRG sample, respectively.

i.e., triangles near the plane of the sky5, so that the plane-of-sky approximation k ⊥ êz is
valid. We assume a known cosmology and forecast the measurement precision on the IA
parameters alone. The derivation of the analytic expression for the Fisher information is
presented in Appendix D. We find that the matrix element Imn is given by

Imn =
V f△
8π4

∫

k1<k2

k1 k2 k3
∂

∂cm
B(k1,k2,−(k1 + k2))

∂

∂cn
B(k1,k2,−(k1 + k2))

×
(

b1(z)
2D(z)2P lin(k1) +

1

n̄

)−1(

b1(z)
2D(z)2P lin(k2) +

1

n̄

)−1

×

(

cs(z)
2D(z)2(1 + z)2fEB(k

α
3 )

2P lin(kα3 ) +
σ2γ
n̄

)

dk1 dk2 dk3. (4.1)

4.1 SDSS-BOSS

We can now numerically evaluate the Fisher information matrix using survey parameters
from SDSS-BOSS DR12 [77] as in Section 3. As mentioned in Section 3, the survey consists
of two subsamples, CMASS (Ngal = 777202, Veff = 1.70 (Gpc/h)3, zeff = 0.57), and LOWZ

5We have chosen the value θ = π/6 such that a given galaxy is subject to an inclination correction of no
greater than 1− cos2 θ = 0.25.
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Figure 5. The estimated effective formation redshift zIA as a function of the measured value of ct
in BOSS (orange dashed line) and DESI LRG (purple dashed line). Solid lines are 1σ error contours.
The black dashed line marks the fiducial value zIA = 6.0 adopted for the calculations of the quantities
shown in Figures 1–3 and Tables 1 and 2. The offset between the two central curves is due to the fact
that the BOSS and DESI LRG surveys have different effective (observation) redshifts, so we would
expect different observed values of ct for the same value of zIA.

To second order in δlin, the bias coefficients describing IA evolve in time even under the
assumption of passive evolution, due to nonlinear growth of structure and the mixing of bias
coefficients due to galaxy advection. This passive evolution assumption is often adopted in
theoretical work on IA, although the extent to which it is correct remains an open question.
Future observations could either verify this assumption or call it into question, depending on
whether or not the IA coefficients are observed to transform under time evolution in a manner
consistent with the calculations in this work.

The advection effect arises because galaxies have peculiar velocities which cause their
comoving positions to change over time. Notably, because the local gravitational field at a
point in spacetime determines the acceleration of a galaxy at that point, a galaxy’s peculiar
velocity will retain the memory of the gravitational effects that the galaxy has felt through-
out its history. Advection therefore results in a component of γI with nonlocal dependence
on the cosmological fields. The nonlocal component is of particular interest as a probe of
galaxy formation physics, because it can potentially be used to trace IA evolution back to
the time of galaxy formation and determine the approximate redshift at which the IA were
set. We therefore suggest that in addition to cosmology, galaxy formation physics is a com-

– 16 –
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Looking ahead in IA
• DES Y3 analysis (~4200 deg 3x area of Y1) 
• Implement and analyze complete 1loop 

model (cf Z. Vlah talk); pipelines for LSST 
and Euclid 

• New hydro simulations and observational 
constraints (IllustrisTNG, PAU, eBOSS, 
DES, …) 

• IA as a probe of LSS and fundamental 
physics
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FIG. 7. Bias in cosmological parameters ⌦m (left) and S8

(right) due to unaccounted-for non-linearities in the data vec-
tor, for di↵erent scale cuts (Rclustering, Rggl). The vertical grey
line indicates the cosmology of the input data vectors; data
points and error bars show the inferred cosmology parame-
ters and 1� uncertainties. The top line shows the constrain-
ing power of the baseline analysis, and demonstrates that it
is unbiased. The next two lines show the parameter bias due
to unaccounted-for non-linear galaxy biasing, and the bottom
three lines show the parameter bias due to unaccounted-for
contributions from the 1-halo term to �t. See Sec. IVA for
details.

adopted in the baseline model, and the e↵ect of mises-
timated priors on systematic e↵ects — which we discuss
in turn.

The data points in the first four lines illustrate the
parameter bias from known physical e↵ects that are not
included in the baseline model:

(a) Non-linear galaxy bias: repeated from Sec. IVA for
completeness.

(b) Non-locality of �t: repeated from Sec. IVA for com-
pleteness.

(c) Baryonic feedback e↵ects on the matter power spec-
trum: the input data vector is based on matter
power spectrum from the AGN scenario of the
OWLS [91] suite of cosmological, hydrodynami-
cal simulations, which includes baryonic feedback
from supernovae, and AGN, and analyzed with the
halofit baseline model. We stress that we assume
all probes in our data vector to be a↵ected by AGN
feedback, including the galaxy-galaxy lensing and
galaxy clustering part. This is a conservative ap-
proximation, as redMaGiC galaxies form early and
are likely less a↵ected by feedback processes. We
also note that the AGN scenario is considered to be
one of the most extreme baryonic physics scenarios.
Hence, the resulting bias seen in Fig. 8 is an upper
limit of baryonic e↵ects.

(d) Limber approximation: We calculate the input
data vector using the exact (non-Limber) expres-
sion, including the redshift-space distortion contri-
butions to galaxy clustering [92], and analyze it
with the baseline model which employs the Lim-
ber approximation.

The baseline models for astrophysical systematics
(galaxy bias, intrinsic alignments) are somewhat arbi-
trary choices, and we now test whether these parameter-
izations are flexible enough to mitigate plausible varia-
tions of these models:

(e) Redshift evolution of linear galaxy bias: In addition
to the scale dependence of galaxy bias discussed in
the previous subsection, the redshift evolution of
galaxy bias is another key uncertainty. Various fit-
ting functions and physically motivated parameter-
izations for the redshift evolution of linear bias exist
in the literature (see [93] for an overview); choosing
among these is highly specific to the galaxy sample.
DES-SV observations [26] and DES mock catalogs
[42] indicate that the halo occupation distribution
of the redMaGiC high-density sample evolves only
weakly over the redshift range 0.1 < z < 0.6. Hence
the bias evolution of this sample is primarily caused
by the redshift evolution of halo bias. We generate
an input data vector that includes bias evolution
within each redshift bin

b
i(k, z) = b

i
1 ⇥

1 + z

1 + hzii , (19)

which is analyzed with the baseline model assuming
constant bias within each redshift bin.

(f) Redshift evolution of the IA amplitude: The NLA
model is typically used to describe IA of early type
galaxies (see e.g. [94, 95] for recent reviews), of-
ten ignoring the alignment of blue galaxies, which
is likely weaker [96, 97]. The observed IA of low-
redshift, bright, red galaxies Ared(L, z) has been
described as a power law in galaxy luminosity and
redshift [98, 99], although the theoretical expecta-
tion for redshift evolution is uncertain. To gen-
erate an expected IA amplitude redshift evolution
(see [100] for the detailed procedure), we calculate
the mean IA amplitude of the red source galax-
ies hAred(mlim, z)i by averaging the observed am-
plitude scaling of Joachimi et al. [98] over the
DEEP2 red galaxy luminosity function [101], as-
suming a limiting magnitude mr ⇠ 23 for the
Y1 source sample. We then calculate an intrin-
sic alignment amplitude for the full source sam-
ple assuming no intrinsic alignments of blue galax-
ies, A(z) = hAred(mlim, z)i ⇥ fred(z) with fred(z)
the fraction of red galaxies, which is also estimated
from the DEEP2 luminosity functions for red and
all galaxies. With the observed IA normalization

Y1 Methods: Krause+ 2017
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function ⇠gm over line-of-sight distance ⇧:

⌃(R) = ⇢m
π 1

�1
d⇧

h
1 + ⇠gm

⇣p
R2 + ⇧2

⌘i
, (3)

where ⇢m is the mean matter density. ⌃(R1, R2) is the mean
surface mass density averaged between R1 and R2

⌃(R1, R2) =
2

R
2
2 � R

2
1

π
R2

R1
R
0
dR

0⌃(R0). (4)

⌃crit is a geometrical factor that determines how the am-
plitude of the signal depends on lens and source redshift,
and for a single source redshift plane at angular diameter
distance Ds, is given by

⌃�1
crit =

(
(1 + zl) 4⇡G

c2
Dl (Ds�Dl )

Ds
if Ds > Dl

0 otherwise
(5)

where zl is the lens redshift.
The presence of ⌃(0, R) in equation 2 makes clear the

non-locality of �⌃(R) (and therefore �t (✓)); this term de-
pends on the distribution of mass around the lens on all
scales up to R, or equivalently, on ⇠gm(r) for all 0 < r < R.
As a consequence, �⌃(R) and �t (✓) can be sensitive to the
mass distribution on one-halo scales, where a perturbative
modeling approach will break down, even when measured at
separations R that correspond to much larger physical scales
in the lens plane. There is extensive discussion of this e↵ect
in Baldauf et al. (2010) who propose an estimator-based ap-
proach for dealing with this non-locality that we discuss in
Section 2.3. We note here that a projected galaxy clustering
measurement, wgg(R) does not su↵er from this e↵ect - here
the minimum physical scale probed in the three-dimensional
correlation function ⇠gg(r) is the same as the transverse sep-
aration R.

If we assume we can model the galaxy-matter correla-
tion function ⇠gm(r) only down to some minimum scale rmin,
we can account for the contribution from scales below rmin
in the following way. For R > rmin we can decompose ⌃(0, R)
into two terms

⌃(0, R) =
r

2
min⌃(0, rmin)

R2 +
(R2 � r

2
min)⌃(rmin, R)

R2 . (6)

Only the first term in equation 6 is beyond our ability
to model accurately (the second term requires only ⇠gm at

r > rmin). This first term has 1/R
2 scale dependence, so for

R > rmin, any bias in our model due to inaccurate prediction
of ⇠gm(r < rmin) has a simple 1/R

2 scale dependence.
Hence, for R > rmin, we can model �⌃(R) as

�⌃(R) = �⌃model(R) + B/R
2 (7)

where �⌃model(R) is the prediction based on a model for
⇠gm(r) that is correct for scales r > rmin, but can be arbi-
trarily wrong for r < rmin, and B is some unknown constant
that we can marginalize over.

Note that the first term in equation 6 is just the tan-
gential shear contribution from the excess mass enclosed in
a cylinder of radius rmin. For transverse scales R larger than
rmin this has the same lensing signal as a point-mass located
at R = 0, hence in the following we will refer to this contribu-
tion as the point-mass contribution. However, the constant
B in equation 7 does not correspond exactly to this enclosed

mass if our model for ⇠gm(r) makes a non-zero prediction for

⌃(0, rmin). In this case

B =
�M

⇡R2⌃crit
(8)

where �M is the bias in the model prediction for the enclosed
mass i.e. this term accounts for inaccuracies in the enclosed
mass prediction. We note that for a given lens galaxy sample,
B will be a function of lens redshift as well as R i.e. B =

B(zl, R).
We can also write B in terms of systematic bias on

the galaxy-matter correlation function prediction, ⇠bias
gm (r) ⌘

⇠model
gm (r) � ⇠true

gm (r) i.e. the di↵erence between our model for
⇠gm(r) and the truth,

B =
2

R2⌃crit

π 1

�1
d⇧

π
R

0
R
0dR

0
h
1 + ⇠bias

gm
⇣p

R2 + ⇧2
⌘i
. (9)

A prior on B could then be constructed from a scale-
dependent prior on ⇠bias

gm (r) (see e.g. Baldauf et al. 2016 for
more discussion of the inclusion of such theoretical uncer-
tainties in cosmological parameter esitmation).

In Section 2.5, we perform tests of our formalism using
the �⌃(R) signal from a truncated NFW profile (see that sec-
tion for details). The blue solid lines in Figure 1 shows ⌃(R)
(top-panel) and �⌃(R) for a truncated NFW profile, as well
as these same quantities for a point-mass with the same to-
tal mass as the truncated NFW profile (orange-dashed lines).
For the point-mass case, ⌃(R) is simply a delta function at
R = 0, while �⌃(R) / 1/R

2. This plot demonstrates the point
that 1-halo contributions with very di↵erent scale depen-
dence in ⇠gm(r) and therefore ⌃(R) have very similar scale
dependence in �⌃(R) on all but the smallest scales. This is
why marginalizing over a point-mass contribution can e↵ec-
tively account for an uncertain one-halo contribution.

Of course, by marginalizing over B we lose some infor-
mation, which will result in a loss in constraining power.
However, we believe this is well justified, since the physical
scales informing our model are now well-controlled. Assum-
ing that biases in the ⇠gm(r) prediction increase at smaller
physical scales, accounting for the non-local contribution in
this way should allow for the robust use of smaller scales
in the measurement than if the non-local contribution is ig-
nored. As discussed above, if one does have a motivated
prior on the potential size of biases in ⇠gm(r) at small scales,
that information can be naturally included, and the loss in
constraining power will be reduced.

2.2 Analytic marginalization of the enclosed mass
contribution

We have described in Section 2.1 how uncertainty in the
model prediction for �⌃(R > rmin) that arises from uncer-
tainty in the model prediction for ⇠gm(r<rmin) can be ac-

counted for my marginalizing over a term with 1/R
2 de-

pendence (equation 7). The simple form of this contamina-
tion model (e.g. the scale dependence is not dependent on
cosmology or the lens galaxy properties) makes this term
suitable for an analytic marginalization approach (see e.g.
Bridle et al. 2002). The likelihood desired for our parameter
estimation is P(�⌃obs(R)|�⌃model(R)) where, as in equation 7,
�⌃(R)model is the prediction based on a model for ⇠gm(r) that

MNRAS 000, 1–13 (2015)
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neously constrain the galaxy bias, and cosmological param-
eters, in particular the matter density and matter clustering
amplitude at low redshift. Especially when combined with
external constraints from e.g. the cosmic microwave back-
ground, this combination can also provide competitive con-
straints on the dark energy equation of state (Weinberg et al.
2013). These constraints will only improve with upcoming
stage IV surveys such as the Large Synoptic Survey Tele-
scope1 (LSST), Euclid2 and the Wide-Field Infrared Survey
Telescope3 (WFIRST), which will dramatically increase the
volume of high quality weak-lensing data available.

There are typically significant observational and theo-
retical challenges in performing a galaxy-galaxy lensing anal-
ysis (Mandelbaum 2018). In the former category, the shear
must be estimated with high accuracy from images of faint
source galaxies that are typically noisy and blurred by a
point spread function, an ongoing challenge in the weak
lensing community (e.g. Bridle et al. 2009; Kitching et al.
2012; Mandelbaum et al. 2014). Furthermore, interpreting
the signal requires redshift information for both lens and
source galaxies, which generally requires estimating photo-
metric redshifts from noisy flux estimates in a small number
(typically around 5) of optical or near-infrared bands (e.g.
Hildebrandt et al. 2017; Hoyle et al. 2018; Tanaka et al.
2018).

There are also significant theoretical challenges when
attempting to model the galaxy-galaxy lensing signal, which
generally becomes more di�cult at smaller scales. In order
to predict the signal, an accurate prediction for the galaxy-
matter correlation function ⇠gm(r) is required for some range
of physical scales r. On su�ciently large scales we expect lin-
ear bias to hold (e.g. Fry & Gaztanaga 1993; Kaiser 1984),
such that ⇠gm(r) = b⇠mm(r), where b is the linear galaxy bias,
an unknown constant that can be marginalized over and
⇠mm(r) is the matter correlation function. A higher-order per-
turbative modelling approach may be successful in predict-
ing ⇠gm(r) at smaller, mildly nonlinear scales (see Desjacques
et al. 2018 for a recent review). A perturbative approach will
likely fail on scales approaching the 1-halo regime, but here
a model which assumes some halo occupation distribution
(Peacock & Smith 2000; Seljak 2000; Berlind & Weinberg
2002; Wechsler & Tinker 2018) combined with an accurate
prediction for the clustering of dark matter halos may be
successful (e.g. Cacciato et al. 2013; Nishimichi et al. 2018;
Wibking et al. 2019). Even this approach will break down
on galactic scales where galactic astrophysics will a↵ect the
matter distribution in and around the lens galaxy.

The important point is that whatever modeling ap-
proach is taken, it is crucial to ensure that the measurement
is only sensitive to scales in ⇠gm(r) where that modelling ap-
proach is su�ciently accurate. In Section 2.1 we describe
how the galaxy-galaxy signal receives a non-local contribu-
tion that depends on scales in ⇠gm(r) that are much smaller
than the separation at which the measurement is made (i.e.
the impact parameter in the lens plane). It was this poten-
tial non-local contribution that motivated the use of a larger

1 http://www.lsst.org
2 http://sci.esa.int/science-e/www/area/index.cfm?

fareaid=102
3 http://wfirst.gsfc.nasa.gov

minimum scale for galaxy-galaxy lensing than for galaxy
clustering in the combined clustering, galaxy-galaxy lens-
ing and cosmic shear analysis of Dark Energy Survey (DES)
Year 1 data in Krause et al. (2017); DES Collaboration et al.
(2017). We demonstrate how this non-local contribution can
be accounted for in parameter estimation, and use analytic
marginalization (Bridle et al. 2002) to avoid adding extra
sampling parameters.

When galaxy-galaxy lensing of a given lens sample is
measured from multiple sources redshifts, some limited in-
formation can be extracted even in the absence of a model
for the galaxy-matter correlation function. This is often re-
ferred to as shear-ratio information; since the ratio of the
signals measured from two di↵erent source redshifts depends
only on the Universe’s geometry (Jain & Taylor 2003; Hu &
Jain 2004; Bernstein & Jain 2004). In Section 3 we extend
the aforementioned analytic marginalization formalism to
allow the retention of shear-ratio information from small-
scale galaxy-galaxy lensing measurements that would oth-
erwise be excluded due to modelling uncertainties. Our use
of analytic marginalization for both these problems makes
our methods much more useful for cosmological parameter
estimation from weak lensing surveys; without this the extra
tens or hundreds of sampling parameters may lead to signif-
icant increases in convergence time for MCMC-based infer-
ence. We demonstrate the utility of our methodology by sim-
ulating cosmological parameter inference from a DES Year
5-like galaxy-galaxy lensing and galaxy clustering datavec-
tor in Section 4.

We conclude and discuss some potential limitations of
the methodology in Section 5.

2 THE POINT-MASS CONTRIBUTION TO
TANGENTIAL SHEAR

We start in Section 2.1 by describing how physical scales in
⇠gm contribute to the galaxy-galaxy lensing signal, and how
the non-local contribution from small physical scales can be
marginalized over. We draw in particular on Baldauf et al.
(2010) (also see a recent treatment in Singh et al. 2018). We
discuss the use of analytic marginalization in Section 2.2,
and compare to the approach of Baldauf et al. (2010) in
Section 2.3. We extend the formalism to a tomographic tan-
gential shear measurement in Section 2.4.1, and demonstrate
the e↵ectiveness of our approach in recovering unbiased pa-
rameters in Section 2.5.

2.1 Theory

A lens galaxy sample at angular diameter distance Dl gen-
erates a mean tangential shear, �t (✓) (e.g. Hu & Jain 2004)

�t (✓ = R/Dl) =
�⌃(R)
⌃crit

(1)

where

�⌃(R) = ⌃(0, R) � ⌃(R) (2)

and ⌃(R) is the excess mean surface mass density at trans-
verse physical separation R from the lens, given by the pro-
jection of the three-dimensional galaxy-matter correlation

MNRAS 000, 1–13 (2015)
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function ⇠gm over line-of-sight distance ⇧:

⌃(R) = ⇢m
π 1

�1
d⇧

h
1 + ⇠gm

⇣p
R2 + ⇧2

⌘i
, (3)

where ⇢m is the mean matter density. ⌃(R1, R2) is the mean
surface mass density averaged between R1 and R2

⌃(R1, R2) =
2

R
2
2 � R

2
1

π
R2

R1
R
0
dR

0⌃(R0). (4)

⌃crit is a geometrical factor that determines how the am-
plitude of the signal depends on lens and source redshift,
and for a single source redshift plane at angular diameter
distance Ds, is given by

⌃�1
crit =

(
(1 + zl) 4⇡G

c2
Dl (Ds�Dl )

Ds
if Ds > Dl

0 otherwise
(5)

where zl is the lens redshift.
The presence of ⌃(0, R) in equation 2 makes clear the

non-locality of �⌃(R) (and therefore �t (✓)); this term de-
pends on the distribution of mass around the lens on all
scales up to R, or equivalently, on ⇠gm(r) for all 0 < r < R.
As a consequence, �⌃(R) and �t (✓) can be sensitive to the
mass distribution on one-halo scales, where a perturbative
modeling approach will break down, even when measured at
separations R that correspond to much larger physical scales
in the lens plane. There is extensive discussion of this e↵ect
in Baldauf et al. (2010) who propose an estimator-based ap-
proach for dealing with this non-locality that we discuss in
Section 2.3. We note here that a projected galaxy clustering
measurement, wgg(R) does not su↵er from this e↵ect - here
the minimum physical scale probed in the three-dimensional
correlation function ⇠gg(r) is the same as the transverse sep-
aration R.

If we assume we can model the galaxy-matter correla-
tion function ⇠gm(r) only down to some minimum scale rmin,
we can account for the contribution from scales below rmin
in the following way. For R > rmin we can decompose ⌃(0, R)
into two terms

⌃(0, R) =
r

2
min⌃(0, rmin)

R2 +
(R2 � r

2
min)⌃(rmin, R)

R2 . (6)

Only the first term in equation 6 is beyond our ability
to model accurately (the second term requires only ⇠gm at

r > rmin). This first term has 1/R
2 scale dependence, so for

R > rmin, any bias in our model due to inaccurate prediction
of ⇠gm(r < rmin) has a simple 1/R

2 scale dependence.
Hence, for R > rmin, we can model �⌃(R) as

�⌃(R) = �⌃model(R) + B/R
2 (7)

where �⌃model(R) is the prediction based on a model for
⇠gm(r) that is correct for scales r > rmin, but can be arbi-
trarily wrong for r < rmin, and B is some unknown constant
that we can marginalize over.

Note that the first term in equation 6 is just the tan-
gential shear contribution from the excess mass enclosed in
a cylinder of radius rmin. For transverse scales R larger than
rmin this has the same lensing signal as a point-mass located
at R = 0, hence in the following we will refer to this contribu-
tion as the point-mass contribution. However, the constant
B in equation 7 does not correspond exactly to this enclosed

mass if our model for ⇠gm(r) makes a non-zero prediction for

⌃(0, rmin). In this case

B =
�M

⇡R2⌃crit
(8)

where �M is the bias in the model prediction for the enclosed
mass i.e. this term accounts for inaccuracies in the enclosed
mass prediction. We note that for a given lens galaxy sample,
B will be a function of lens redshift as well as R i.e. B =

B(zl, R).
We can also write B in terms of systematic bias on

the galaxy-matter correlation function prediction, ⇠bias
gm (r) ⌘

⇠model
gm (r) � ⇠true

gm (r) i.e. the di↵erence between our model for
⇠gm(r) and the truth,

B =
2

R2⌃crit

π 1
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π
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0dR
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1 + ⇠bias
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R2 + ⇧2
⌘i
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A prior on B could then be constructed from a scale-
dependent prior on ⇠bias

gm (r) (see e.g. Baldauf et al. 2016 for
more discussion of the inclusion of such theoretical uncer-
tainties in cosmological parameter esitmation).

In Section 2.5, we perform tests of our formalism using
the �⌃(R) signal from a truncated NFW profile (see that sec-
tion for details). The blue solid lines in Figure 1 shows ⌃(R)
(top-panel) and �⌃(R) for a truncated NFW profile, as well
as these same quantities for a point-mass with the same to-
tal mass as the truncated NFW profile (orange-dashed lines).
For the point-mass case, ⌃(R) is simply a delta function at
R = 0, while �⌃(R) / 1/R

2. This plot demonstrates the point
that 1-halo contributions with very di↵erent scale depen-
dence in ⇠gm(r) and therefore ⌃(R) have very similar scale
dependence in �⌃(R) on all but the smallest scales. This is
why marginalizing over a point-mass contribution can e↵ec-
tively account for an uncertain one-halo contribution.

Of course, by marginalizing over B we lose some infor-
mation, which will result in a loss in constraining power.
However, we believe this is well justified, since the physical
scales informing our model are now well-controlled. Assum-
ing that biases in the ⇠gm(r) prediction increase at smaller
physical scales, accounting for the non-local contribution in
this way should allow for the robust use of smaller scales
in the measurement than if the non-local contribution is ig-
nored. As discussed above, if one does have a motivated
prior on the potential size of biases in ⇠gm(r) at small scales,
that information can be naturally included, and the loss in
constraining power will be reduced.

2.2 Analytic marginalization of the enclosed mass
contribution

We have described in Section 2.1 how uncertainty in the
model prediction for �⌃(R > rmin) that arises from uncer-
tainty in the model prediction for ⇠gm(r<rmin) can be ac-

counted for my marginalizing over a term with 1/R
2 de-

pendence (equation 7). The simple form of this contamina-
tion model (e.g. the scale dependence is not dependent on
cosmology or the lens galaxy properties) makes this term
suitable for an analytic marginalization approach (see e.g.
Bridle et al. 2002). The likelihood desired for our parameter
estimation is P(�⌃obs(R)|�⌃model(R)) where, as in equation 7,
�⌃(R)model is the prediction based on a model for ⇠gm(r) that
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neously constrain the galaxy bias, and cosmological param-
eters, in particular the matter density and matter clustering
amplitude at low redshift. Especially when combined with
external constraints from e.g. the cosmic microwave back-
ground, this combination can also provide competitive con-
straints on the dark energy equation of state (Weinberg et al.
2013). These constraints will only improve with upcoming
stage IV surveys such as the Large Synoptic Survey Tele-
scope1 (LSST), Euclid2 and the Wide-Field Infrared Survey
Telescope3 (WFIRST), which will dramatically increase the
volume of high quality weak-lensing data available.

There are typically significant observational and theo-
retical challenges in performing a galaxy-galaxy lensing anal-
ysis (Mandelbaum 2018). In the former category, the shear
must be estimated with high accuracy from images of faint
source galaxies that are typically noisy and blurred by a
point spread function, an ongoing challenge in the weak
lensing community (e.g. Bridle et al. 2009; Kitching et al.
2012; Mandelbaum et al. 2014). Furthermore, interpreting
the signal requires redshift information for both lens and
source galaxies, which generally requires estimating photo-
metric redshifts from noisy flux estimates in a small number
(typically around 5) of optical or near-infrared bands (e.g.
Hildebrandt et al. 2017; Hoyle et al. 2018; Tanaka et al.
2018).

There are also significant theoretical challenges when
attempting to model the galaxy-galaxy lensing signal, which
generally becomes more di�cult at smaller scales. In order
to predict the signal, an accurate prediction for the galaxy-
matter correlation function ⇠gm(r) is required for some range
of physical scales r. On su�ciently large scales we expect lin-
ear bias to hold (e.g. Fry & Gaztanaga 1993; Kaiser 1984),
such that ⇠gm(r) = b⇠mm(r), where b is the linear galaxy bias,
an unknown constant that can be marginalized over and
⇠mm(r) is the matter correlation function. A higher-order per-
turbative modelling approach may be successful in predict-
ing ⇠gm(r) at smaller, mildly nonlinear scales (see Desjacques
et al. 2018 for a recent review). A perturbative approach will
likely fail on scales approaching the 1-halo regime, but here
a model which assumes some halo occupation distribution
(Peacock & Smith 2000; Seljak 2000; Berlind & Weinberg
2002; Wechsler & Tinker 2018) combined with an accurate
prediction for the clustering of dark matter halos may be
successful (e.g. Cacciato et al. 2013; Nishimichi et al. 2018;
Wibking et al. 2019). Even this approach will break down
on galactic scales where galactic astrophysics will a↵ect the
matter distribution in and around the lens galaxy.

The important point is that whatever modeling ap-
proach is taken, it is crucial to ensure that the measurement
is only sensitive to scales in ⇠gm(r) where that modelling ap-
proach is su�ciently accurate. In Section 2.1 we describe
how the galaxy-galaxy signal receives a non-local contribu-
tion that depends on scales in ⇠gm(r) that are much smaller
than the separation at which the measurement is made (i.e.
the impact parameter in the lens plane). It was this poten-
tial non-local contribution that motivated the use of a larger

1 http://www.lsst.org
2 http://sci.esa.int/science-e/www/area/index.cfm?

fareaid=102
3 http://wfirst.gsfc.nasa.gov

minimum scale for galaxy-galaxy lensing than for galaxy
clustering in the combined clustering, galaxy-galaxy lens-
ing and cosmic shear analysis of Dark Energy Survey (DES)
Year 1 data in Krause et al. (2017); DES Collaboration et al.
(2017). We demonstrate how this non-local contribution can
be accounted for in parameter estimation, and use analytic
marginalization (Bridle et al. 2002) to avoid adding extra
sampling parameters.

When galaxy-galaxy lensing of a given lens sample is
measured from multiple sources redshifts, some limited in-
formation can be extracted even in the absence of a model
for the galaxy-matter correlation function. This is often re-
ferred to as shear-ratio information; since the ratio of the
signals measured from two di↵erent source redshifts depends
only on the Universe’s geometry (Jain & Taylor 2003; Hu &
Jain 2004; Bernstein & Jain 2004). In Section 3 we extend
the aforementioned analytic marginalization formalism to
allow the retention of shear-ratio information from small-
scale galaxy-galaxy lensing measurements that would oth-
erwise be excluded due to modelling uncertainties. Our use
of analytic marginalization for both these problems makes
our methods much more useful for cosmological parameter
estimation from weak lensing surveys; without this the extra
tens or hundreds of sampling parameters may lead to signif-
icant increases in convergence time for MCMC-based infer-
ence. We demonstrate the utility of our methodology by sim-
ulating cosmological parameter inference from a DES Year
5-like galaxy-galaxy lensing and galaxy clustering datavec-
tor in Section 4.

We conclude and discuss some potential limitations of
the methodology in Section 5.

2 THE POINT-MASS CONTRIBUTION TO
TANGENTIAL SHEAR

We start in Section 2.1 by describing how physical scales in
⇠gm contribute to the galaxy-galaxy lensing signal, and how
the non-local contribution from small physical scales can be
marginalized over. We draw in particular on Baldauf et al.
(2010) (also see a recent treatment in Singh et al. 2018). We
discuss the use of analytic marginalization in Section 2.2,
and compare to the approach of Baldauf et al. (2010) in
Section 2.3. We extend the formalism to a tomographic tan-
gential shear measurement in Section 2.4.1, and demonstrate
the e↵ectiveness of our approach in recovering unbiased pa-
rameters in Section 2.5.

2.1 Theory

A lens galaxy sample at angular diameter distance Dl gen-
erates a mean tangential shear, �t (✓) (e.g. Hu & Jain 2004)

�t (✓ = R/Dl) =
�⌃(R)
⌃crit

(1)

where

�⌃(R) = ⌃(0, R) � ⌃(R) (2)

and ⌃(R) is the excess mean surface mass density at trans-
verse physical separation R from the lens, given by the pro-
jection of the three-dimensional galaxy-matter correlation
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function ⇠gm over line-of-sight distance ⇧:

⌃(R) = ⇢m
π 1

�1
d⇧

h
1 + ⇠gm

⇣p
R2 + ⇧2

⌘i
, (3)

where ⇢m is the mean matter density. ⌃(R1, R2) is the mean
surface mass density averaged between R1 and R2

⌃(R1, R2) =
2

R
2
2 � R

2
1

π
R2

R1
R
0
dR

0⌃(R0). (4)

⌃crit is a geometrical factor that determines how the am-
plitude of the signal depends on lens and source redshift,
and for a single source redshift plane at angular diameter
distance Ds, is given by

⌃�1
crit =

(
(1 + zl) 4⇡G

c2
Dl (Ds�Dl )

Ds
if Ds > Dl

0 otherwise
(5)

where zl is the lens redshift.
The presence of ⌃(0, R) in equation 2 makes clear the

non-locality of �⌃(R) (and therefore �t (✓)); this term de-
pends on the distribution of mass around the lens on all
scales up to R, or equivalently, on ⇠gm(r) for all 0 < r < R.
As a consequence, �⌃(R) and �t (✓) can be sensitive to the
mass distribution on one-halo scales, where a perturbative
modeling approach will break down, even when measured at
separations R that correspond to much larger physical scales
in the lens plane. There is extensive discussion of this e↵ect
in Baldauf et al. (2010) who propose an estimator-based ap-
proach for dealing with this non-locality that we discuss in
Section 2.3. We note here that a projected galaxy clustering
measurement, wgg(R) does not su↵er from this e↵ect - here
the minimum physical scale probed in the three-dimensional
correlation function ⇠gg(r) is the same as the transverse sep-
aration R.

If we assume we can model the galaxy-matter correla-
tion function ⇠gm(r) only down to some minimum scale rmin,
we can account for the contribution from scales below rmin
in the following way. For R > rmin we can decompose ⌃(0, R)
into two terms

⌃(0, R) =
r

2
min⌃(0, rmin)

R2 +
(R2 � r

2
min)⌃(rmin, R)

R2 . (6)

Only the first term in equation 6 is beyond our ability
to model accurately (the second term requires only ⇠gm at

r > rmin). This first term has 1/R
2 scale dependence, so for

R > rmin, any bias in our model due to inaccurate prediction
of ⇠gm(r < rmin) has a simple 1/R

2 scale dependence.
Hence, for R > rmin, we can model �⌃(R) as

�⌃(R) = �⌃model(R) + B/R
2 (7)

where �⌃model(R) is the prediction based on a model for
⇠gm(r) that is correct for scales r > rmin, but can be arbi-
trarily wrong for r < rmin, and B is some unknown constant
that we can marginalize over.

Note that the first term in equation 6 is just the tan-
gential shear contribution from the excess mass enclosed in
a cylinder of radius rmin. For transverse scales R larger than
rmin this has the same lensing signal as a point-mass located
at R = 0, hence in the following we will refer to this contribu-
tion as the point-mass contribution. However, the constant
B in equation 7 does not correspond exactly to this enclosed

mass if our model for ⇠gm(r) makes a non-zero prediction for

⌃(0, rmin). In this case

B =
�M

⇡R2⌃crit
(8)

where �M is the bias in the model prediction for the enclosed
mass i.e. this term accounts for inaccuracies in the enclosed
mass prediction. We note that for a given lens galaxy sample,
B will be a function of lens redshift as well as R i.e. B =

B(zl, R).
We can also write B in terms of systematic bias on

the galaxy-matter correlation function prediction, ⇠bias
gm (r) ⌘

⇠model
gm (r) � ⇠true

gm (r) i.e. the di↵erence between our model for
⇠gm(r) and the truth,

B =
2

R2⌃crit

π 1

�1
d⇧

π
R

0
R
0dR

0
h
1 + ⇠bias

gm
⇣p

R2 + ⇧2
⌘i
. (9)

A prior on B could then be constructed from a scale-
dependent prior on ⇠bias

gm (r) (see e.g. Baldauf et al. 2016 for
more discussion of the inclusion of such theoretical uncer-
tainties in cosmological parameter esitmation).

In Section 2.5, we perform tests of our formalism using
the �⌃(R) signal from a truncated NFW profile (see that sec-
tion for details). The blue solid lines in Figure 1 shows ⌃(R)
(top-panel) and �⌃(R) for a truncated NFW profile, as well
as these same quantities for a point-mass with the same to-
tal mass as the truncated NFW profile (orange-dashed lines).
For the point-mass case, ⌃(R) is simply a delta function at
R = 0, while �⌃(R) / 1/R

2. This plot demonstrates the point
that 1-halo contributions with very di↵erent scale depen-
dence in ⇠gm(r) and therefore ⌃(R) have very similar scale
dependence in �⌃(R) on all but the smallest scales. This is
why marginalizing over a point-mass contribution can e↵ec-
tively account for an uncertain one-halo contribution.

Of course, by marginalizing over B we lose some infor-
mation, which will result in a loss in constraining power.
However, we believe this is well justified, since the physical
scales informing our model are now well-controlled. Assum-
ing that biases in the ⇠gm(r) prediction increase at smaller
physical scales, accounting for the non-local contribution in
this way should allow for the robust use of smaller scales
in the measurement than if the non-local contribution is ig-
nored. As discussed above, if one does have a motivated
prior on the potential size of biases in ⇠gm(r) at small scales,
that information can be naturally included, and the loss in
constraining power will be reduced.

2.2 Analytic marginalization of the enclosed mass
contribution

We have described in Section 2.1 how uncertainty in the
model prediction for �⌃(R > rmin) that arises from uncer-
tainty in the model prediction for ⇠gm(r<rmin) can be ac-

counted for my marginalizing over a term with 1/R
2 de-

pendence (equation 7). The simple form of this contamina-
tion model (e.g. the scale dependence is not dependent on
cosmology or the lens galaxy properties) makes this term
suitable for an analytic marginalization approach (see e.g.
Bridle et al. 2002). The likelihood desired for our parameter
estimation is P(�⌃obs(R)|�⌃model(R)) where, as in equation 7,
�⌃(R)model is the prediction based on a model for ⇠gm(r) that
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function ⇠gm over line-of-sight distance ⇧:

⌃(R) = ⇢m
π 1
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, (3)

where ⇢m is the mean matter density. ⌃(R1, R2) is the mean
surface mass density averaged between R1 and R2

⌃(R1, R2) =
2

R
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2
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π
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R
0
dR

0⌃(R0). (4)

⌃crit is a geometrical factor that determines how the am-
plitude of the signal depends on lens and source redshift,
and for a single source redshift plane at angular diameter
distance Ds, is given by

⌃�1
crit =

(
(1 + zl) 4⇡G

c2
Dl (Ds�Dl )

Ds
if Ds > Dl

0 otherwise
(5)

where zl is the lens redshift.
The presence of ⌃(0, R) in equation 2 makes clear the

non-locality of �⌃(R) (and therefore �t (✓)); this term de-
pends on the distribution of mass around the lens on all
scales up to R, or equivalently, on ⇠gm(r) for all 0 < r < R.
As a consequence, �⌃(R) and �t (✓) can be sensitive to the
mass distribution on one-halo scales, where a perturbative
modeling approach will break down, even when measured at
separations R that correspond to much larger physical scales
in the lens plane. There is extensive discussion of this e↵ect
in Baldauf et al. (2010) who propose an estimator-based ap-
proach for dealing with this non-locality that we discuss in
Section 2.3. We note here that a projected galaxy clustering
measurement, wgg(R) does not su↵er from this e↵ect - here
the minimum physical scale probed in the three-dimensional
correlation function ⇠gg(r) is the same as the transverse sep-
aration R.

If we assume we can model the galaxy-matter correla-
tion function ⇠gm(r) only down to some minimum scale rmin,
we can account for the contribution from scales below rmin
in the following way. For R > rmin we can decompose ⌃(0, R)
into two terms

⌃(0, R) =
r

2
min⌃(0, rmin)

R2 +
(R2 � r

2
min)⌃(rmin, R)

R2 . (6)

Only the first term in equation 6 is beyond our ability
to model accurately (the second term requires only ⇠gm at

r > rmin). This first term has 1/R
2 scale dependence, so for

R > rmin, any bias in our model due to inaccurate prediction
of ⇠gm(r < rmin) has a simple 1/R

2 scale dependence.
Hence, for R > rmin, we can model �⌃(R) as

�⌃(R) = �⌃model(R) + B/R
2 (7)

where �⌃model(R) is the prediction based on a model for
⇠gm(r) that is correct for scales r > rmin, but can be arbi-
trarily wrong for r < rmin, and B is some unknown constant
that we can marginalize over.

Note that the first term in equation 6 is just the tan-
gential shear contribution from the excess mass enclosed in
a cylinder of radius rmin. For transverse scales R larger than
rmin this has the same lensing signal as a point-mass located
at R = 0, hence in the following we will refer to this contribu-
tion as the point-mass contribution. However, the constant
B in equation 7 does not correspond exactly to this enclosed

mass if our model for ⇠gm(r) makes a non-zero prediction for

⌃(0, rmin). In this case

B =
�M

⇡R2⌃crit
(8)

where �M is the bias in the model prediction for the enclosed
mass i.e. this term accounts for inaccuracies in the enclosed
mass prediction. We note that for a given lens galaxy sample,
B will be a function of lens redshift as well as R i.e. B =

B(zl, R).
We can also write B in terms of systematic bias on

the galaxy-matter correlation function prediction, ⇠bias
gm (r) ⌘

⇠model
gm (r) � ⇠true

gm (r) i.e. the di↵erence between our model for
⇠gm(r) and the truth,

B =
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A prior on B could then be constructed from a scale-
dependent prior on ⇠bias

gm (r) (see e.g. Baldauf et al. 2016 for
more discussion of the inclusion of such theoretical uncer-
tainties in cosmological parameter esitmation).

In Section 2.5, we perform tests of our formalism using
the �⌃(R) signal from a truncated NFW profile (see that sec-
tion for details). The blue solid lines in Figure 1 shows ⌃(R)
(top-panel) and �⌃(R) for a truncated NFW profile, as well
as these same quantities for a point-mass with the same to-
tal mass as the truncated NFW profile (orange-dashed lines).
For the point-mass case, ⌃(R) is simply a delta function at
R = 0, while �⌃(R) / 1/R

2. This plot demonstrates the point
that 1-halo contributions with very di↵erent scale depen-
dence in ⇠gm(r) and therefore ⌃(R) have very similar scale
dependence in �⌃(R) on all but the smallest scales. This is
why marginalizing over a point-mass contribution can e↵ec-
tively account for an uncertain one-halo contribution.

Of course, by marginalizing over B we lose some infor-
mation, which will result in a loss in constraining power.
However, we believe this is well justified, since the physical
scales informing our model are now well-controlled. Assum-
ing that biases in the ⇠gm(r) prediction increase at smaller
physical scales, accounting for the non-local contribution in
this way should allow for the robust use of smaller scales
in the measurement than if the non-local contribution is ig-
nored. As discussed above, if one does have a motivated
prior on the potential size of biases in ⇠gm(r) at small scales,
that information can be naturally included, and the loss in
constraining power will be reduced.

2.2 Analytic marginalization of the enclosed mass
contribution

We have described in Section 2.1 how uncertainty in the
model prediction for �⌃(R > rmin) that arises from uncer-
tainty in the model prediction for ⇠gm(r<rmin) can be ac-

counted for my marginalizing over a term with 1/R
2 de-

pendence (equation 7). The simple form of this contamina-
tion model (e.g. the scale dependence is not dependent on
cosmology or the lens galaxy properties) makes this term
suitable for an analytic marginalization approach (see e.g.
Bridle et al. 2002). The likelihood desired for our parameter
estimation is P(�⌃obs(R)|�⌃model(R)) where, as in equation 7,
�⌃(R)model is the prediction based on a model for ⇠gm(r) that

MNRAS 000, 1–13 (2015)

cf. Annular statistics, Baldauf+ 2010; 
Singh+ 2018; S. Sugiyama poster



“Point mass” model
MacCrann, JB, Jain, Krause 201810 N. MacCrann et al.

Figure 4. All panels show constraints on ⌦m and S8 = �8(⌦m/0.3)0.5 for a DES-like galaxy-galaxy lensing and galaxy clustering analysis.
The simulated datavector has contamination by an un-modeled one-halo term in the galaxy-galaxy lensing signal (described in Section 2.5).
In addition to ⌦m and �8, the Hubble constant H0, and a linear bias for each redshift bin are varied (see Section 4 for details). The true
values (i.e. those used to generate the datavector) are shown as the grey dashed lines. The three sets of contours represent the three
modeling approaches described in Section 4. Blue solid contours result from using neither point-mass or small-scale marginalization.
The orange outlined contours use point-mass but not small-scale marginalization. The green outlined contours use both point-mass and
small-scale marginalization. The top-left panel is for our fiducial setup described in Section 2.5. In the top-right (bottom-left) panels
we use larger (smaller) minimum scale cuts corresponding to 8h�1Mpc (2h�1Mpc) in the lens plane for both galaxy-galaxy lensing and
clustering. In the bottom-right panel, a source galaxy number density 4 times higher than the fiducial setup is assumed.

galaxy density) we additionally allow w0, the (constant with
redshift) dark energy equation of state parameter, to vary
from its ⇤CDM value of �1, in the range [�3,�0.33]. Figure 5
shows marginalized constraints on ⌦m S8, h and w0. Again,
modeling approach (i) recovers the tightest constraints, but
biases with respect to the truth values are present, with the
truth lying outside the 68% credible interval in the S8 � h

and S8 � ⌦m planes for example. Again, when using small-
scale marginalization, modest gains in constraining power
are apparent in most of the 2d projections of the posterior,
and the constraint on w0 is improved by 16% with respect
to the case when only point-mass marginalization is used.

5 DISCUSSION

We have described and demonstrated a methodology which
uses an analytic marginalization approach to target two is-

sues with small scale galaxy-galaxy lensing measurements.
Firstly, the galaxy-galaxy lensing signal measured at physi-
cal separation R in the lens plane receives significant contri-
butions from scales r < R in the galaxy-matter correlation
function ⇠gm(r). We have described how uncertainty in the
model prediction for this contribution can be straightfor-
wardly marginalized over by including in the model a 1/R

2

(for �⌃(R)) or 1/✓2 (for �t (✓)) dependence with free ampli-
tude. We demonstrate that this approach can successfully
remove biases in inferred parameters when an un-modeled
one-halo contribution is present in the galaxy-galaxy lensing
signal, and that this marginalization can be performed ana-
lytically, to avoid adding extra sampling parameters to the
parameter inference. We note that the approach of Baldauf
et al. (2010) also achieves this goal, although our approach
may more naturally allow the use of priors and retention of
shear-ratio information in a tomographic analysis.

Secondly, we demonstrate that an analytic marginaliza-
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Summary
• “3x2” cosmology and intrinsic alignments 

• Intrinsic shape correlations are important 

• Analytic modeling of IA 
• PT model analogous to bias expansion 

• Observational results and future directions 
• Hints of quadratic alignments in DES Y1 

• Galaxy-galaxy lensing at smaller scales 
• Simple “point-mass” parameter


