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Conventional Framework for Cosmological Dynamics
• Homogeneous "background" with scale factor a(t) 

• a'' = -(4π/3) G ρb a        (' = d/dt)  Friedmann eq 

• Structure (in e.g. N-body calc.) obeys 

• x''+ 2 (a'/a) x' + ∇φ / a2 = 0 where 

• x = r / a are "conformal" coords, and 

• ∇2φ = 4π G (ρ - ρb) a2  

• Analogous effects of background on e.g. Maxwell 

• But no feedback (or "backreaction") of δρ on evolution of a(t) 

• G.F.R. Ellis (1984...): is this legitimate? 

• Fun fact: who first obtained these equations?



The underlying “world view”
• FRW metric - with expansion factor a(t) - is determined by 

the global properties of the universe 

• This involves strong-field GR physics 

• which we don't fully understand, except in highly 
idealised (e.g. homogeneous) situations 

• a(t) is determined by averaging of some "source" 

• Should reduce to density in homogeneous limit 

• But structure may change this 

• a(t) - the "expansion of space" - then affects the small-
scale dynamics of structure



Racz et al 2017: Modified N-body calculations
• They assume the conventional DZ structure equations: 

• x'' + 2 (a'/a) x' + ∇φ / a2 = 0 

• ∇2φ = 4π G (ρ - ρb) a2 

• but evolve a(t) according to a → a + a'δt 

• with a' obtained by averaging local expansion:<a'/a> 
invoking "separate universe" approximation 

• Big effect: a(t) very similar to ΛCDM concordance model 

• And this would change the growth rate also, hence: 

• "concordance cosmology without dark energy"

Concordance cosmology without dark energy 3

the basis of other successful approximations, such as halo
models and the Press–Schecter formalism.

The volumetric expansion of mini-universes is the cube
of the linear expansion, assuming statistical isotropy. Ignor-
ing the boundary conditions and the local environment of
touching Lagrangian regions, one can average the volume
increment of the independent domains to get the total vol-
ume increment of the simulation cube, i.e. the global in-
crement of a homogeneous, e↵ective scale factor, c.f. Eq. 2.
This is equivalent to neglecting correlations between regions
and non-sphericity caused by tidal forces, not unlike in the
case of halo models. The statistical approach means that
we can avoid stitching together regions of space-time. We
use a global simulation time step size and, while the cor-
responding infinitesimal changes of local redshift may vary
from region to region, the expansion rate is averaged in every
simulation step, hence distances and velocities are rescaled
homogeneously using the e↵ective scale factor. As a result,
similarly to standard N-body simulations, time is kept ho-
mogeneous and in one-to-one correspondence with redshift.

We ran simulations with up to 1.08·106 particles of mass
M = 1.19 ·1011M� in a volume of 147.623 Mpc3. The initial
redshift was set to z = 9 for both the standard ⇤CDM and
the AvERA simulations. At this redshift, backreaction and
the e↵ect of ⇤ are both expected to be negligible. Since we
focus on the expansion rate, Zel’dovich transients from the
late start are insignificant. Initial conditions were calculated
using LPTic (Crocce, Pueblas & Scoccimarro 2006) with a
fluctuation amplitude of �8 = 0.8159 which is defined as-
suming the ⇤CDM growth function. The initial expansion
rate was set to match the current value of H0 = 67.74 km/s

Mpc
(Planck Collaboration 2016) for the ⇤CDM model, yielding

Hz=9.0 = 1191.9 km/s
Mpc . Except for the value of ⇤, AvERA

simulations were run with parameters derived from the lat-
est Planck CMB observations.

As a consistency test, the initial conditions exactly re-
produce the ⇤CDM expansion history when inhomogeneities
are not accounted for and ⇤ is non-zero. Similarly, with ⇤ =
0 and homogeneous expansion, the initial conditions repro-
duce the expansion history of a flat, matter only (⌦m = 1,

⌦⇤ = 0) FLRW model with H0 = 37.69 km/s
Mpc . Fig. 2 sum-

marizes the main results of our paper, where the expansion
history a(t), the Hubble parameter H(t), the redshift z(t)
and the average density ⇢(t) are plotted for the AvERA
model (blue), ⇤CDM (red) and EdS (green) with the same
initial conditions at z = 9. The evolution of the parame-
ters from AvERA mimic ⇤CDM remarkably well, while the
EdS model deviates more and more at later epochs. We em-
phasize that, despite the overall similarity, there are small
numerical di↵erences between the former two models which
can be tested in future high precision observations.

As it was mentioned before, in AvERA simulations the
expansion history and the resulting present day Hubble pa-
rameter depend on the particle mass, which corresponds to
the coarse graining scale. To explore the e↵ects of the coarse
graining scale, we executed simulations with di↵erent parti-
cle masses between 1.17 · 1011 � 3 · 1012M�. The resulting
z = 0 Hubble parameters, as a function of particle mass, are
summarised in Tab. 1. The sensitivity of H0 to the coarse
graining scale is relatively minor: a factor of 10 change in
the particle mass causes about a 10 per cent change in the

Figure 2. The expansion history of the universe. Clockwise from
the upper left, we plot the scale factor, the Hubble parameter,
the matter density and the redshift as functions of the simulation
time t, i.e. the age of the universe. See the text for a discussion.

present time Hubble parameter, see Fig. 4. The detailed in-
vestigation of this e↵ect will be presented in a future paper.

3 COMPARISON WITH OBSERVATIONS

Given the close similarity of the expansion history of the
AvERA model with that of ⇤CDM, and the fact that linear
growth history is driven by the time evolution of the expan-
sion rate, the AvERA model provides an adequate frame-
work for the interpretation of many observations support-
ing the concordance model, despite the fact that the current
version of the simulation is not suitable yet to compute light
propagation across the curved space-time regions. Luckily,
luminosity distance at low redshift (but beyond the statis-
tical scale of homogeneity) is primarily determined by the
expansion history and is only slightly sensitive to curvature.
In what follows, we do not attempt to fit any data, we simply
plot our fiducial model with di↵erent coarse graining scales
against select key observations.

One of the first and strongest observational proofs of
accelerating cosmic expansion came from type Ia super-
nova distance modulus measurements (Riess et al. 1998;
Perlmutter et al. 1999; Scolnic et al. 2015). Fig. 3 shows
the distance moduli from the observations overplotted with
curves from the EdS, Planck ⇤CDM, and our model.
We used the SuperCal compilation (Scolnic et al. 2015;
Scolnic & Kessler 2016) of supernova observations, with
magnitudes corrected to the fiducial color and luminosity,
and set the zero point of the absolute magnitude scale to
match the Cepheid-distance-based absolute magnitudes as
determined by Riess et al. (Riess et al. 2016). Both the
Planck ⇤CDM and our AvERA model follow the observed
deviation from EdS. If we choose the coarse graining scale



Is it legitimate to modify the Friedmann equation?

• Does emergence of structure really "backreact" on a(t)? 

• Can address this in Newtonian gravity.  Relevant as: 

• Accurate description of the local universe (v << c) 

• aside from effects from BHs 

• this is where we observe e.g. H0 = 70 km/s/Mpc! 

• not H0 ~ 35 km/s/Mpc expected w/o dark energy, Ωk 

• At z = 0.1 relativistic corrections ~ 0.01 

• If backreaction is important Newtonian gravity should 
show it



A candidate effect - tidal torques
• Neighbouring structures exert torques on each other 

• happens as structures reach δ ~ 1 

• essentially non-linear (2nd order) effect 

• Interaction between large scale and internal motions 

• explains spin of galaxies  

• can this affect expansion? 

• it would in the local group 

• so why not? 



Inhomogeneous Newtonian cosmology
• Lay down particles on a uniform grid in a big uniformly 

expanding sphere (v = Hr) 

• Perturb the particles off the grid r -> r + δr 

• plus related velocity perturbations to generate "growing 
mode" of structure 

• g(r) can be decomposed into: 

• homogenous field sourced by mean density ρ 

• inhomogeneous field sourced by δρ (little dipoles) 

• equations of motions r'' = g can be re-scaled 

• -> equations that are solved in N-body codes



Newtonian gravity in re-scaled coordinates
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is larger than the largest existing inhomogeneities.’, while
on the other they argue that ‘the “conspiracy assumption”
that Q = 0 [. . . ] must be considered a strong restriction on
generality’.

Equation (4) is the basis of ‘kinematic backreaction’;
the idea that there is a modification of the expansion rate
caused by the emergence of structure. It has been studied in
N-body simulations by Buchert, Kerscher & Sicka 2000, who
make some interesting claims, and by Kazimierczak 2016,
and has been widely discussed in reviews of backreaction.

In a similar vein, Racz et al. (2017) have proposed that
the successes of the ⇤CDM concordance cosmology can be
obtained without the need for dark energy. They say “Cos-
mological N-body simulations integrate Newtonian dynam-
ics with a changing GR metric that is calculated from av-
eraged quantities.” but that “There is a choice in how the
averaging is done.” Specifically, they propose to maintain
equations (2) and (3) but obtain a(t) by averaging the lo-
cal expansion rate computed from the local density under
some simplifying assumptions. Performing N-body calcula-
tions using this algorithm and with matter only they find
that the averaged expansion rate turns out to be very simi-
lar to that found from solutions of the Friedmann equations
in ⇤CDM. They argue thereby that all of the successes of
the concordance cosmology can be retained without the need
for dark energy through this ‘strong backreaction’ e↵ect.

But is it really legitimate to assume that backreaction
from structure causes a(t) to deviate at all from the solution
of (1)? We can address this in the context of Newtonian grav-
ity. This is relevant because Newtonian gravity should pro-
vide a very accurate description of the local universe since
all velocities – Hubble and peculiar – are small. And it is in
the relatively local universe that the current expansion rate
– a problem for matter dominated cosmology in the con-
ventional framework – is measured. Also, the absolute value
of the curvature radius, which is arguably a non-Newtonian
construct and which may be identified with a is not relevant
here. The absolute value of a drops out of the equations
above. All that appears is the expansion rate ȧ/a and how
a(t) changes with time. In a homogeneous model these are
determined locally. The question of how inhomogeneity af-
fects the expansion is more complex, but it would be bizarre
indeed if the expansion rate of the local universe were af-
fected by the emergence of structure in the distant universe.
So if backreaction is at all important it should be revealed
in a Newtonian analysis.

We will now show that, despite the apparently ques-
tionable assumption of homogeneity in (1), the system of
equations (1-3) is actually precisely equvalent to the New-
tonian equations of motion.

For N particles of mass m interacting under their mu-
tual gravitational attraction there are 3N second order dif-
ferential equations
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These may be solved numerically provided initial positions
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for the particles.
Writing this in terms of arbitrarily re-scaled coordinates
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What we are interested in is the motion of particles with
initial conditions that are close to being in uniform Hubble
expansion with some initial expansion rate H0 (very close
if we start at early times). So we might lay down parti-
cles on a regular grid in r-space within some large spherical
boundary centred on the origin and give the particles small
displacements �r and velocities ṙ = H0r+ �ṙ with ‘peculiar’
velocities �ṙ chosen to excite the growing mode. The corre-
sponding initial conditions in terms of x-coordinates are

x = r/a and ẋ = ((H0 � ȧ/a)r+ �ṙ)/a. (7)

The sum in (6) will have two components: A ‘zeroth
order’ acceleration that, in the limit that the grid spacing
becomes very small, is the same as the gravitational acceler-
ation of a uniform density sphere, which grows linearly with
x
i

, plus a perturbation determined by the displacements
from the grid (we may think of the source of the gravity
being that of the unperturbed grid of particles plus that of
a set of dipole sources). If we define the number density of
particles in x-space n(x) ⌘ P

i
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i

) and �n ⌘ n�n with
n the inverse of the grid cell volume in x-space, equations
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It is interesting to compare this with the conventional
equations. Those are 3N + 1 equations (3 per particle plus
the Friedmann equation for a) whereas here we have only
3N equations, just as in (5).

But since a(t) is arbitrary we may assert that a(t) is
such that the RHS of (8) vanishes – i.e. that a(t) is a solution
of (1) – in which case the vanishing of the LHS is equivalent
to the conventional structure equations (2) and (3).

Moreover, if we set the initial conditions for (1) to be
ȧ/a = H0 then we see from the second of (7) that ẋ = �ṙ/a;
the initial velocity in x-space is a pure perturbation with no
Hubble-flow component.

We thereby recover the original conventional system of
equations, in which there is no feedback (or ‘backreaction’)
from the structure equations on the expansion. But this is
no longer open to the challenge that (1) is only an approxi-
mation. Equation (8), is precisely equivalent to (5), and we
are simply using the freedom in choice of a(t) to impose (1)
as an identity.

Alternatively, if one does not to require this one obtains
modified ‘structure’ equations with a large-scale radial ac-
celeration that would drive a zeroth order Hubble-like flow
to compensate. The results for physical quantities such as
positions, velocities, density etc. however are all invariant
with respect to the choice of a(t).

2 DISCUSSION

We have tried to clarify the meaning of the conventional
equations of Newtonian cosmology. We have expressed the
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N-particles of mass m:

With r = a(t) x for arbitrary a(t)
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on the other they argue that ‘the “conspiracy assumption”
that Q = 0 [. . . ] must be considered a strong restriction on
generality’.

Equation (4) is the basis of ‘kinematic backreaction’;
the idea that there is a modification of the expansion rate
caused by the emergence of structure. It has been studied in
N-body simulations by Buchert, Kerscher & Sicka 2000, who
make some interesting claims, and by Kazimierczak 2016,
and has been widely discussed in reviews of backreaction.

In a similar vein, Racz et al. (2017) have proposed that
the successes of the ⇤CDM concordance cosmology can be
obtained without the need for dark energy. They say “Cos-
mological N-body simulations integrate Newtonian dynam-
ics with a changing GR metric that is calculated from av-
eraged quantities.” but that “There is a choice in how the
averaging is done.” Specifically, they propose to maintain
equations (2) and (3) but obtain a(t) by averaging the lo-
cal expansion rate computed from the local density under
some simplifying assumptions. Performing N-body calcula-
tions using this algorithm and with matter only they find
that the averaged expansion rate turns out to be very simi-
lar to that found from solutions of the Friedmann equations
in ⇤CDM. They argue thereby that all of the successes of
the concordance cosmology can be retained without the need
for dark energy through this ‘strong backreaction’ e↵ect.

But is it really legitimate to assume that backreaction
from structure causes a(t) to deviate at all from the solution
of (1)? We can address this in the context of Newtonian grav-
ity. This is relevant because Newtonian gravity should pro-
vide a very accurate description of the local universe since
all velocities – Hubble and peculiar – are small. And it is in
the relatively local universe that the current expansion rate
– a problem for matter dominated cosmology in the con-
ventional framework – is measured. Also, the absolute value
of the curvature radius, which is arguably a non-Newtonian
construct and which may be identified with a is not relevant
here. The absolute value of a drops out of the equations
above. All that appears is the expansion rate ȧ/a and how
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the Friedmann equation for a) whereas here we have only
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But since a(t) is arbitrary we may assert that a(t) is
such that the RHS of (8) vanishes – i.e. that a(t) is a solution
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Defining
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some simplifying assumptions. Performing N-body calcula-
tions using this algorithm and with matter only they find
that the averaged expansion rate turns out to be very simi-
lar to that found from solutions of the Friedmann equations
in ⇤CDM. They argue thereby that all of the successes of
the concordance cosmology can be retained without the need
for dark energy through this ‘strong backreaction’ e↵ect.

But is it really legitimate to assume that backreaction
from structure causes a(t) to deviate at all from the solution
of (1)? We can address this in the context of Newtonian grav-
ity. This is relevant because Newtonian gravity should pro-
vide a very accurate description of the local universe since
all velocities – Hubble and peculiar – are small. And it is in
the relatively local universe that the current expansion rate
– a problem for matter dominated cosmology in the con-
ventional framework – is measured. Also, the absolute value
of the curvature radius, which is arguably a non-Newtonian
construct and which may be identified with a is not relevant
here. The absolute value of a drops out of the equations
above. All that appears is the expansion rate ȧ/a and how
a(t) changes with time. In a homogeneous model these are
determined locally. The question of how inhomogeneity af-
fects the expansion is more complex, but it would be bizarre
indeed if the expansion rate of the local universe were af-
fected by the emergence of structure in the distant universe.
So if backreaction is at all important it should be revealed
in a Newtonian analysis.

We will now show that, despite the apparently ques-
tionable assumption of homogeneity in (1), the system of
equations (1-3) is actually precisely equvalent to the New-
tonian equations of motion.

For N particles of mass m interacting under their mu-
tual gravitational attraction there are 3N second order dif-
ferential equations
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These may be solved numerically provided initial positions
r
i

and velocities ṙ
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for the particles.
Writing this in terms of arbitrarily re-scaled coordinates

r = a(t)x, so ṙ = ȧx+aẋ and r̈ = äx+2ȧẋ+aẍ, (5) becomes
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ẋ
i

=
Gm

a3

X

j 6=i

x
j

� x
i

|x
j

� x
i

|3 � ä
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What we are interested in is the motion of particles with
initial conditions that are close to being in uniform Hubble
expansion with some initial expansion rate H0 (very close
if we start at early times). So we might lay down parti-
cles on a regular grid in r-space within some large spherical
boundary centred on the origin and give the particles small
displacements �r and velocities ṙ = H0r+ �ṙ with ‘peculiar’
velocities �ṙ chosen to excite the growing mode. The corre-
sponding initial conditions in terms of x-coordinates are

x = r/a and ẋ = ((H0 � ȧ/a)r+ �ṙ)/a. (7)

The sum in (6) will have two components: A ‘zeroth
order’ acceleration that, in the limit that the grid spacing
becomes very small, is the same as the gravitational acceler-
ation of a uniform density sphere, which grows linearly with
x
i

, plus a perturbation determined by the displacements
from the grid (we may think of the source of the gravity
being that of the unperturbed grid of particles plus that of
a set of dipole sources). If we define the number density of
particles in x-space n(x) ⌘ P

i
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) and �n ⌘ n�n with
n the inverse of the grid cell volume in x-space, equations
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ȧ

a
ẋ
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It is interesting to compare this with the conventional
equations. Those are 3N + 1 equations (3 per particle plus
the Friedmann equation for a) whereas here we have only
3N equations, just as in (5).

But since a(t) is arbitrary we may assert that a(t) is
such that the RHS of (8) vanishes – i.e. that a(t) is a solution
of (1) – in which case the vanishing of the LHS is equivalent
to the conventional structure equations (2) and (3).

Moreover, if we set the initial conditions for (1) to be
ȧ/a = H0 then we see from the second of (7) that ẋ = �ṙ/a;
the initial velocity in x-space is a pure perturbation with no
Hubble-flow component.

We thereby recover the original conventional system of
equations, in which there is no feedback (or ‘backreaction’)
from the structure equations on the expansion. But this is
no longer open to the challenge that (1) is only an approxi-
mation. Equation (8), is precisely equivalent to (5), and we
are simply using the freedom in choice of a(t) to impose (1)
as an identity.

Alternatively, if one does not to require this one obtains
modified ‘structure’ equations with a large-scale radial ac-
celeration that would drive a zeroth order Hubble-like flow
to compensate. The results for physical quantities such as
positions, velocities, density etc. however are all invariant
with respect to the choice of a(t).

2 DISCUSSION

We have tried to clarify the meaning of the conventional
equations of Newtonian cosmology. We have expressed the
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2016; and has been widely discussed in reviews of backreac-
tion.

In a similar vein, Racz et al. (2017) have proposed that
the successes of the ⇤CDM concordance cosmology can be
obtained without the need for dark energy. They say ‘Cos-
mological N-body simulations integrate Newtonian dynam-
ics with a changing GR metric that is calculated from av-
eraged quantities.’ but that ‘There is a choice in how the
averaging is done.’ They propose to maintain equations (2)
and (3) but obtain a(t) by averaging the local expansion rate
ȧ/a computed from the local density under some simplify-
ing assumptions and then using this to update a(t) at each
time-step. Performing N-body calculations using this algo-
rithm and with matter only they find a(t) very similar to the
solution of the Friedmann equation in ⇤CDM. They argue
that the successes of the concordance cosmology can thereby
be retained without the need for dark energy through this
‘strong backreaction’ e↵ect.

But is it really legitimate to assume that backreaction
from structure causes a(t) to deviate at all from the solu-
tion of (1)? We can address this in the context of New-
tonian gravity. This is relevant because Newtonian gravity
should provide a very accurate description of the local uni-
verse since all velocities – Hubble and peculiar – are small.
And it is in the relatively local universe that the current
expansion rate – a problem for matter dominated cosmol-
ogy in the conventional framework – is measured. Also, the
absolute value of the curvature radius, which is arguably a
non-Newtonian construct and which may be identified with
a, is not relevant here. The absolute value of a drops out
of the equations above. All that appears is the expansion
rate ȧ/a and how a(t) changes with time. In a homogeneous
model these are determined locally. The question of how in-
homogeneity a↵ects the expansion might seem to be more
complex, but it would be bizarre indeed if the expansion
rate of the local universe were a↵ected by the emergence of
structure in the distant universe. So if backreaction is at all
important it should be revealed in a Newtonian analysis.

We will now show that, despite the apparently ques-
tionable assumption of homogeneity in (1), the system of
equations (1-3) is actually precisely equvalent to the full
Newtonian equations of motion.

2 NEWTONIAN COSMOLOGY IN SCALED
COORDINATES

For N particles of mass m interacting under their mutual
gravitational attraction there are 3N second order di↵eren-
tial equations
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These may be solved numerically provided initial positions
r
i

and velocities ṙ
i

for the particles.
Writing this in terms of arbitrarily re-scaled coordinates

r = a(t)x, so ṙ = ȧx+aẋ and r̈ = äx+2ȧẋ+aẍ, (5) becomes
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ẋ
i

=
Gm

a3

X

j 6=i

x
j

� x
i

|x
j

� x
i

|3 � ä
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What we are interested in is the motion of particles with
initial conditions that are close to being in uniform Hubble

expansion with some initial expansion rate H (very close if
we start at early times). So we might lay down particles on a
regular grid in r-space within some large spherical boundary
centred on the origin and give the particles small displace-
ments �r and velocities ṙ = Hr+�ṙ with ‘peculiar’ velocities
�ṙ chosen to excite the growing mode. The corresponding
initial conditions in terms of x-coordinates are

x = r/a and ẋ = ((H � ȧ/a)r+ �ṙ)/a. (7)

The sum in (6) will have two components: A ‘zeroth
order’ acceleration that, in the limit that the grid spacing
becomes very small, is the same as the gravitational acceler-
ation of a uniform density sphere, which grows linearly with
x
i

, plus a perturbation determined by the displacements
from the grid (we may think of the source of the gravity
being that of the unperturbed grid of particles plus that of
a set of dipole sources). If we define the number density of
particles in x-space n(x) ⌘

P
i

�(x�x
i

) and �n ⌘ n�n with
n the inverse of the grid cell volume in x-space, equations
(6) become
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It is interesting to compare this with the conventional
equations. Those are 3N + 1 equations (3 per particle plus
the Friedmann equation for a) whereas here we have only
3N equations, just as in (5).

But since a(t) is arbitrary we may assert that a(t) is
such that the RHS of (8) vanishes – i.e. that a(t) is a solution
of (1) – in which case the vanishing of the LHS is equivalent
to the conventional structure equations (2) and (3).

Moreover, if we set the initial conditions for (1) to be
ȧ/a = H then we see from the second of (7) that ẋ = �ṙ/a;
the initial velocity in x-space is a pure perturbation with no
Hubble-flow component.

We thereby recover the original conventional system of
equations, in which there is no feedback (or ‘backreaction’)
from the structure equations on the expansion. But this is
no longer open to the challenge that (1) is only an approx-
imation. Equation (8) is precisely equivalent to (5); we are
simply using the freedom in choice of a(t) to impose (1) as
an identity.

Alternatively, if one does not require (1) one obtains
modified ‘structure’ equations with a large-scale radial ac-
celeration that would drive a Hubble-like flow to compen-
sate. The results for all physical quantities such as positions,
velocities, density etc. however are all invariant with respect
to the choice of a(t).

3 DISCUSSION

We have tried to clarify the meaning of the conventional
equations of Newtonian cosmology. We have expressed the
usual Newtonian equations (5) in terms of re-scaled (or what
cosmologists call ‘comoving’) coordinates x to obtain (8).
But in these equations the scale factor a(t) is completely
arbitrary and has no physical impact so there is no dynami-
cal equation that a(t) must obey. This reflects the fact that
the universe we live in can, if one so wishes, be considered
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• there is no extra equation of motion for a(t) 

• But we may choose a(t) to obey Friedmann equation 
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• Gives conventional expansion + structure equations 

• a(t) suffers no backreaction from structure emergence 

• a(t) is just a "book-keeping" factor - no physical effect
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is larger than the largest existing inhomogeneities.’, while
on the other they argue that ‘the “conspiracy assumption”
that Q = 0 [. . . ] must be considered a strong restriction on
generality’.

Equation (4) is the basis of ‘kinematic backreaction’;
the idea that there is a modification of the expansion rate
caused by the emergence of structure. It has been studied in
N-body simulations by Buchert, Kerscher & Sicka 2000, who
make some interesting claims, and by Kazimierczak 2016,
and has been widely discussed in reviews of backreaction.

In a similar vein, Racz et al. (2017) have proposed that
the successes of the ⇤CDM concordance cosmology can be
obtained without the need for dark energy. They say “Cos-
mological N-body simulations integrate Newtonian dynam-
ics with a changing GR metric that is calculated from av-
eraged quantities.” but that “There is a choice in how the
averaging is done.” Specifically, they propose to maintain
equations (2) and (3) but obtain a(t) by averaging the lo-
cal expansion rate computed from the local density under
some simplifying assumptions. Performing N-body calcula-
tions using this algorithm and with matter only they find
that the averaged expansion rate turns out to be very simi-
lar to that found from solutions of the Friedmann equations
in ⇤CDM. They argue thereby that all of the successes of
the concordance cosmology can be retained without the need
for dark energy through this ‘strong backreaction’ e↵ect.

But is it really legitimate to assume that backreaction
from structure causes a(t) to deviate at all from the solution
of (1)? We can address this in the context of Newtonian grav-
ity. This is relevant because Newtonian gravity should pro-
vide a very accurate description of the local universe since
all velocities – Hubble and peculiar – are small. And it is in
the relatively local universe that the current expansion rate
– a problem for matter dominated cosmology in the con-
ventional framework – is measured. Also, the absolute value
of the curvature radius, which is arguably a non-Newtonian
construct and which may be identified with a is not relevant
here. The absolute value of a drops out of the equations
above. All that appears is the expansion rate ȧ/a and how
a(t) changes with time. In a homogeneous model these are
determined locally. The question of how inhomogeneity af-
fects the expansion is more complex, but it would be bizarre
indeed if the expansion rate of the local universe were af-
fected by the emergence of structure in the distant universe.
So if backreaction is at all important it should be revealed
in a Newtonian analysis.

We will now show that, despite the apparently ques-
tionable assumption of homogeneity in (1), the system of
equations (1-3) is actually precisely equvalent to the New-
tonian equations of motion.

For N particles of mass m interacting under their mu-
tual gravitational attraction there are 3N second order dif-
ferential equations
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These may be solved numerically provided initial positions
r
i

and velocities ṙ
i

for the particles.
Writing this in terms of arbitrarily re-scaled coordinates

r = a(t)x, so ṙ = ȧx+aẋ and r̈ = äx+2ȧẋ+aẍ, (5) becomes

ẍ
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ẋ
i

=
Gm

a3

X

j 6=i

x
j

� x
i

|x
j

� x
i

|3 � ä
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What we are interested in is the motion of particles with
initial conditions that are close to being in uniform Hubble
expansion with some initial expansion rate H0 (very close
if we start at early times). So we might lay down parti-
cles on a regular grid in r-space within some large spherical
boundary centred on the origin and give the particles small
displacements �r and velocities ṙ = H0r+ �ṙ with ‘peculiar’
velocities �ṙ chosen to excite the growing mode. The corre-
sponding initial conditions in terms of x-coordinates are

x = r/a and ẋ = ((H0 � ȧ/a)r+ �ṙ)/a. (7)

The sum in (6) will have two components: A ‘zeroth
order’ acceleration that, in the limit that the grid spacing
becomes very small, is the same as the gravitational acceler-
ation of a uniform density sphere, which grows linearly with
x
i

, plus a perturbation determined by the displacements
from the grid (we may think of the source of the gravity
being that of the unperturbed grid of particles plus that of
a set of dipole sources). If we define the number density of
particles in x-space n(x) ⌘ P

i
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) and �n ⌘ n�n with
n the inverse of the grid cell volume in x-space, equations
(6) become
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It is interesting to compare this with the conventional
equations. Those are 3N + 1 equations (3 per particle plus
the Friedmann equation for a) whereas here we have only
3N equations, just as in (5).

But since a(t) is arbitrary we may assert that a(t) is
such that the RHS of (8) vanishes – i.e. that a(t) is a solution
of (1) – in which case the vanishing of the LHS is equivalent
to the conventional structure equations (2) and (3).

Moreover, if we set the initial conditions for (1) to be
ȧ/a = H0 then we see from the second of (7) that ẋ = �ṙ/a;
the initial velocity in x-space is a pure perturbation with no
Hubble-flow component.

We thereby recover the original conventional system of
equations, in which there is no feedback (or ‘backreaction’)
from the structure equations on the expansion. But this is
no longer open to the challenge that (1) is only an approxi-
mation. Equation (8), is precisely equivalent to (5), and we
are simply using the freedom in choice of a(t) to impose (1)
as an identity.

Alternatively, if one does not to require this one obtains
modified ‘structure’ equations with a large-scale radial ac-
celeration that would drive a zeroth order Hubble-like flow
to compensate. The results for physical quantities such as
positions, velocities, density etc. however are all invariant
with respect to the choice of a(t).

2 DISCUSSION

We have tried to clarify the meaning of the conventional
equations of Newtonian cosmology. We have expressed the
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2016; and has been widely discussed in reviews of backreac-
tion.

In a similar vein, Racz et al. (2017) have proposed that
the successes of the ⇤CDM concordance cosmology can be
obtained without the need for dark energy. They say ‘Cos-
mological N-body simulations integrate Newtonian dynam-
ics with a changing GR metric that is calculated from av-
eraged quantities.’ but that ‘There is a choice in how the
averaging is done.’ They propose to maintain equations (2)
and (3) but obtain a(t) by averaging the local expansion rate
ȧ/a computed from the local density under some simplify-
ing assumptions and then using this to update a(t) at each
time-step. Performing N-body calculations using this algo-
rithm and with matter only they find a(t) very similar to the
solution of the Friedmann equation in ⇤CDM. They argue
that the successes of the concordance cosmology can thereby
be retained without the need for dark energy through this
‘strong backreaction’ e↵ect.

But is it really legitimate to assume that backreaction
from structure causes a(t) to deviate at all from the solu-
tion of (1)? We can address this in the context of New-
tonian gravity. This is relevant because Newtonian gravity
should provide a very accurate description of the local uni-
verse since all velocities – Hubble and peculiar – are small.
And it is in the relatively local universe that the current
expansion rate – a problem for matter dominated cosmol-
ogy in the conventional framework – is measured. Also, the
absolute value of the curvature radius, which is arguably a
non-Newtonian construct and which may be identified with
a, is not relevant here. The absolute value of a drops out
of the equations above. All that appears is the expansion
rate ȧ/a and how a(t) changes with time. In a homogeneous
model these are determined locally. The question of how in-
homogeneity a↵ects the expansion might seem to be more
complex, but it would be bizarre indeed if the expansion
rate of the local universe were a↵ected by the emergence of
structure in the distant universe. So if backreaction is at all
important it should be revealed in a Newtonian analysis.

We will now show that, despite the apparently ques-
tionable assumption of homogeneity in (1), the system of
equations (1-3) is actually precisely equvalent to the full
Newtonian equations of motion.

2 NEWTONIAN COSMOLOGY IN SCALED
COORDINATES

For N particles of mass m interacting under their mutual
gravitational attraction there are 3N second order di↵eren-
tial equations
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These may be solved numerically provided initial positions
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for the particles.
Writing this in terms of arbitrarily re-scaled coordinates

r = a(t)x, so ṙ = ȧx+aẋ and r̈ = äx+2ȧẋ+aẍ, (5) becomes
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a
x
i

. (6)

What we are interested in is the motion of particles with
initial conditions that are close to being in uniform Hubble

expansion with some initial expansion rate H (very close if
we start at early times). So we might lay down particles on a
regular grid in r-space within some large spherical boundary
centred on the origin and give the particles small displace-
ments �r and velocities ṙ = Hr+�ṙ with ‘peculiar’ velocities
�ṙ chosen to excite the growing mode. The corresponding
initial conditions in terms of x-coordinates are

x = r/a and ẋ = ((H � ȧ/a)r+ �ṙ)/a. (7)

The sum in (6) will have two components: A ‘zeroth
order’ acceleration that, in the limit that the grid spacing
becomes very small, is the same as the gravitational acceler-
ation of a uniform density sphere, which grows linearly with
x
i

, plus a perturbation determined by the displacements
from the grid (we may think of the source of the gravity
being that of the unperturbed grid of particles plus that of
a set of dipole sources). If we define the number density of
particles in x-space n(x) ⌘

P
i

�(x�x
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) and �n ⌘ n�n with
n the inverse of the grid cell volume in x-space, equations
(6) become
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ẋ
i

�Gm

a3

Z
d3x �n(x)

x� x
i

|x� x
i

|3

= �
✓
ä
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It is interesting to compare this with the conventional
equations. Those are 3N + 1 equations (3 per particle plus
the Friedmann equation for a) whereas here we have only
3N equations, just as in (5).

But since a(t) is arbitrary we may assert that a(t) is
such that the RHS of (8) vanishes – i.e. that a(t) is a solution
of (1) – in which case the vanishing of the LHS is equivalent
to the conventional structure equations (2) and (3).

Moreover, if we set the initial conditions for (1) to be
ȧ/a = H then we see from the second of (7) that ẋ = �ṙ/a;
the initial velocity in x-space is a pure perturbation with no
Hubble-flow component.

We thereby recover the original conventional system of
equations, in which there is no feedback (or ‘backreaction’)
from the structure equations on the expansion. But this is
no longer open to the challenge that (1) is only an approx-
imation. Equation (8) is precisely equivalent to (5); we are
simply using the freedom in choice of a(t) to impose (1) as
an identity.

Alternatively, if one does not require (1) one obtains
modified ‘structure’ equations with a large-scale radial ac-
celeration that would drive a Hubble-like flow to compen-
sate. The results for all physical quantities such as positions,
velocities, density etc. however are all invariant with respect
to the choice of a(t).

3 DISCUSSION

We have tried to clarify the meaning of the conventional
equations of Newtonian cosmology. We have expressed the
usual Newtonian equations (5) in terms of re-scaled (or what
cosmologists call ‘comoving’) coordinates x to obtain (8).
But in these equations the scale factor a(t) is completely
arbitrary and has no physical impact so there is no dynami-
cal equation that a(t) must obey. This reflects the fact that
the universe we live in can, if one so wishes, be considered
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Is there relativistic backreaction?

• Buchert etc: "GR backreaction" → non-zero - and large 

• But local universe should be accurately Newtonian 

• errors ~ v2/c2 → ~1% accuracy within z = 0.1 

• and that's where we measure H0 

• Are there even very small effects on expansion history?



Is there relativistic backreaction?
• Averaging of Einstein equations: G = T

• homogeneous models: metric g -> G = diagonal 

• T = diag(ρ, P, P, P) and ∇.T = 0 -> Friedmann equations 

• with inhomogeneity < G > = < T >? 

• "averaging problem" widely discussed in BR literature 

• what about internal pressure P of clusters? 

• As invoked in EFT perturbation theory 

• or strong internal pressure in stars, compact objects 

• Does that give rise to F-equations with non-zero P?



Is there relativistic backreaction?
• Averaging of Einstein equations: < G > = < T >? 

• what about e.g. stars with strong internal pressure P 

• does that give rise to F-equations with non-zero P? 

• No. Relativistic stars have Schwarzschild external geom 

• mass parameter m 

• space integral of the effective stress tensor 

• independent of time 

• Conservation of stars implies ρ ~ a-3 

• which demands P = 0 in F-equations



Relativistic BR from large-scale structure?
• Einstein-Straus '45 

• "What is the effect of 
expansion of space" 

• -> Swiss-cheese 

• Fully non-linear 

• Interesting pertn to 
e.g. proper mass 

• but background 
expansion is exactly 
unperturbed 

• small effects on D(z)



Backreaction from inter-galactic pressure

• Stars (or DM) ejected from galaxies by merging BHs 

• intergalactic pressure P = n m σv2 

• Homogeneous (in conformal coords) pressure is a flux of 
energy with non-zero divergence in real space 

• 1st law ... PdV work .... : ρ' = - (ρ+P/c2) V' / V 

• but a very small effect 

• relies on pressure being extended throughout space 

• no effect from internal pressure in bound systems that 
are surrounded by empty space 



Summary

• A different perspective on the DZ equations. There is no 
dynamical equation for a(t). a(t) is arbitrary.  There is no 
freedom to modify F-equation w/o changing structure eqs. 
Conventional system of equations is exact.  Tidal torques 
might affect expansion of the local group, but can’t affect 
the universal expansion. 

• Comments on relativistic backreaction.  Averaging of 
stress-energy for systems with internal pressure does not 
introduce non-zero P in Freidmann equations. Exact non-
linear solutions show no backreaction. Intergalactic P - 
from grav-waves, high-v stars - does backreact at a weak 
level, but is positive.




