Why there is no Newtonian backreaction

Nick Kaiser arXiv:1703.08809

Conventional Framework for Cosmological Dynamics

- Homogeneous "background" with scale factor a(t)
 - $a'' = -(4\pi/3) G \rho_b a$ (' = d/dt) Friedmann eq
- Structure (in e.g. N-body calc.) obeys
 - $\mathbf{x}'' + 2 (a'/a) \mathbf{x}' + \nabla \phi / a^2 = 0$ where
 - $\mathbf{x} = \mathbf{r} / a$ are "conformal" coords, and
 - $\nabla^2 \phi = 4\pi G (\rho \rho_b) a^2$
 - Analogous effects of background on e.g. Maxwell
- But no feedback (or "backreaction") of $\delta \rho$ on evolution of a(t)
- G.F.R. Ellis (1984...): is this legitimate?
 - Fun fact: who first obtained these equations?

The underlying "world view"

- FRW metric with expansion factor a(t) is determined by the global properties of the universe
- This involves *strong-field* GR physics
 - which we don't fully understand, except in highly idealised (e.g. homogeneous) situations
 - a(t) is determined by averaging of some "source"
 - Should reduce to density in homogeneous limit
 - But structure may change this
 - a(t) the "expansion of space" then affects the smallscale dynamics of structure

Racz et al 2017: Modified N-body calculations

They assume the conventional DZ <u>structure</u> equations:

•
$$\mathbf{x}'' + 2(a'/a)\mathbf{x}' + \nabla \phi / a^2 = 0$$

- $\nabla^2 \phi = 4\pi G (\rho \rho_b) a^2$
- but evolve a(t) according to $a \rightarrow a + a'\delta t$

- with a' obtained by averaging <u>local expansion</u>:<a'/a> invoking "separate universe" approximation
- Big effect: a(t) very similar to ACDM concordance model
 - And this would change the growth rate also, hence:
 - "concordance cosmology without dark energy"

Is it legitimate to modify the Friedmann equation?

- Does emergence of structure really "backreact" on a(t)?
- Can address this in <u>Newtonian</u> gravity. Relevant as:
 - Accurate description of the local universe (v << c)
 - aside from effects from BHs
 - this is where we observe e.g. $H_0 = 70 \text{ km/s/Mpc!}$
 - not $H_0 \sim 35$ km/s/Mpc expected w/o dark energy, Ω_k
 - At z = 0.1 relativistic corrections ~ 0.01
- If backreaction is important Newtonian gravity should show it

A candidate effect - tidal torques

- Neighbouring structures exert torques on each other
 - happens as structures reach $\delta \sim 1$
 - essentially non-linear (2nd order) effect
 - Interaction between large scale and internal motions
 - explains spin of galaxies
- can this affect expansion?
 - it would in the local group

• so why not?

Inhomogeneous Newtonian cosmology

- Lay down particles on a uniform grid in a big uniformly expanding sphere ($\mathbf{v} = H\mathbf{r}$)
- Perturb the particles off the grid $\mathbf{r} \rightarrow \mathbf{r} + \delta \mathbf{r}$
 - plus related velocity perturbations to generate "growing mode" of structure
- **g**(**r**) can be decomposed into:
 - homogenous field sourced by mean density p
 - inhomogeneous field sourced by $\delta \rho$ (little dipoles)
- equations of motions r'' = g can be re-scaled
 - -> equations that are solved in N-body codes

Newtonian gravity in re-scaled coordinates

N-particles of mass m: $\ddot{\mathbf{r}}_i = Gm \sum_{j \neq i} \frac{\mathbf{r}_j - \mathbf{r}_i}{|\mathbf{r}_j - \mathbf{r}_i|^3}.$

With $\mathbf{r} = \mathbf{a}(t) \mathbf{x}$ for <u>arbitrary</u> $\mathbf{a}(t)$

$$\ddot{\mathbf{x}}_i + 2\frac{\dot{a}}{a}\dot{\mathbf{x}}_i = \frac{Gm}{a^3}\sum_{j\neq i}\frac{\mathbf{x}_j - \mathbf{x}_i}{|\mathbf{x}_j - \mathbf{x}_i|^3} - \frac{\ddot{a}}{a}\mathbf{x}_i.$$

initial conditions: $\mathbf{x} = \mathbf{r}/a$ and $\dot{\mathbf{x}} = ((H - \dot{a}/a)\mathbf{r} + \delta \dot{\mathbf{r}})/a$

Defining $n(\mathbf{x}) \equiv \sum_{i} \delta(\mathbf{x} - \mathbf{x}_{i})$ and $\delta n \equiv n - \overline{n}$

$$\ddot{\mathbf{x}}_{i} + 2\frac{\dot{a}}{a}\dot{\mathbf{x}}_{i} - \frac{Gm}{a^{3}}\int d^{3}x \ \delta n(\mathbf{x})\frac{\mathbf{x} - \mathbf{x}_{i}}{|\mathbf{x} - \mathbf{x}_{i}|^{3}}$$
$$= -\left(\frac{\ddot{a}}{a} + \frac{4\pi Gm\overline{n}}{3a^{3}}\right)\mathbf{x}_{i}.$$

Exactly equivalent to the usual equations in **r**-coords

$$\begin{array}{ll} \underline{\text{Newtonian cosmology:}} & \ddot{\mathbf{x}}_i + 2\frac{\dot{a}}{a}\dot{\mathbf{x}}_i - \frac{Gm}{a^3}\int d^3x \; \delta n(\mathbf{x})\frac{\mathbf{x} - \mathbf{x}_i}{|\mathbf{x} - \mathbf{x}_i|^3} \\ & \text{with ICs} & = -\left(\frac{\ddot{a}}{a} + \frac{4\pi Gm\overline{n}}{3a^3}\right)\mathbf{x}_i. \\ & \mathbf{x} = \mathbf{r}/a \quad \text{and} \quad \dot{\mathbf{x}} = ((H - \dot{a}/a)\mathbf{r} + \delta\dot{\mathbf{r}})/a \end{array}$$

- 3N equations for N particles
 - there is no extra equation of motion for a(t)
- But we may <u>choose</u> a(t) to obey Friedmann equation
 - an "auxiliary relation"
- Gives conventional expansion + structure equations
 - <u>a(t) suffers no backreaction from structure emergence</u>
 - a(t) is just a "book-keeping" factor no physical effect

Is there relativistic backreaction?

- Buchert etc: "GR backreaction" → non-zero and large
- But local universe should be accurately Newtonian
 - errors ~ $v^2/c^2 \rightarrow ~1\%$ accuracy within z = 0.1
 - and that's where we measure H_0
- Are there even very small effects on expansion history?

Is there *relativistic* backreaction?

- Averaging of Einstein equations: G = T
- homogeneous models: metric g -> G = diagonal
 - $\mathbf{T} = \text{diag}(\rho, P, P, P)$ and $\mathbf{\nabla} \cdot \mathbf{T} = 0 \rightarrow \text{Friedmann equations}$
- with inhomogeneity < **G** > = < **T** >?
 - "averaging problem" widely discussed in BR literature
- what about internal pressure P of clusters?
 - As invoked in EFT perturbation theory
 - or strong internal pressure in stars, compact objects
- Does that give rise to F-equations with non-zero P?

Is there *relativistic* backreaction?

- Averaging of Einstein equations: < **G** > = < **T** >?
- what about e.g. stars with strong internal pressure P
 - does that give rise to F-equations with non-zero P?
- No. Relativistic stars have Schwarzschild external geom
 - mass parameter m
 - space integral of the effective stress tensor
 - independent of time
- Conservation of stars implies $\rho \sim a^{-3}$
 - which demands P = 0 in F-equations

Relativistic BR from large-scale structure?

- Einstein-Straus '45
 - "What is the effect of expansion of space"
- -> Swiss-cheese
- Fully non-linear
- Interesting pertⁿ to e.g. proper mass
- but background expansion is exactly unperturbed
- small effects on D(z)

Backreaction from inter-galactic pressure

- Stars (or DM) ejected from galaxies by merging BHs
 - intergalactic pressure P = n m σ_v^2
- Homogeneous (in conformal coords) pressure is a <u>flux of</u> <u>energy</u> with non-zero divergence in real space
 - 1st law ... PdV work : $\rho' = -(\rho + P/c^2) V' / V$
 - but a <u>very small effect</u>
- relies on pressure being extended throughout space
 - no effect from internal pressure in bound systems that are surrounded by empty space

Summary

- A different perspective on the DZ equations. There is no dynamical equation for a(t). a(t) is arbitrary. There is no freedom to modify F-equation w/o changing structure eqs. Conventional system of equations is exact. Tidal torques might affect expansion of the local group, but can't affect the universal expansion.
- Comments on relativistic backreaction. Averaging of stress-energy for systems with internal pressure does not introduce non-zero P in Freidmann equations. Exact nonlinear solutions show no backreaction. Intergalactic P from grav-waves, high-v stars - does backreact at a weak level, but is positive.