An efficient parallel algorithm for estimating higher-order polyspectra

Donghui Jeong (Penn State)

PTChat@Kyoto, 10 April 2019

Prof. Juhan Kim @ KIAS

Work done by

Joseph Tomlinson @ Penn State

Higher order polyspectra

- In an statistically homogeneous universe
 - Bispectrum

• Trispectrum

Quadspectrum, Pentaspectrum, etc

 $\langle \delta(\mathbf{k}_1)\delta(\mathbf{k}_2)\delta(\mathbf{k}_3)\rangle = (2\pi)^3 B(\mathbf{k}_1,\mathbf{k}_2,\mathbf{k}_3)\delta^D(\mathbf{k}_1+\mathbf{k}_2+\mathbf{k}_3)$

 $\langle \delta(\mathbf{k}_1) \delta(\mathbf{k}_2) \delta(\mathbf{k}_3) \delta(\mathbf{k}_4) \rangle = (2\pi)^3 T(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3, \mathbf{k}_4) \delta^D(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3 + \mathbf{k}_4)$

 $\langle \delta(\mathbf{k}_1)\delta(\mathbf{k}_2)\cdots\delta(\mathbf{k}_n)\rangle = (2\pi)^3 P_n(\mathbf{k}_1,\mathbf{k}_2,\cdots,\mathbf{k}_n)\delta^D(\mathbf{k}_1+\mathbf{k}_2+\cdots+\mathbf{k}_n)$

Naive estimator: bispectrum

- Let's focus on the monopole, because the extension is trivial
 - From the definition:

• We can estimate the bispectrum from direct sampling:

$$B(k_1, k_2, k_3) = \frac{V_f}{V_{(123)}^B (2\pi)^3} \int_{k_1} d^3 q_1 \int_{k_2} d^3 q_2 \delta(\mathbf{q}_1) \delta(\mathbf{q}_2) \delta(-\mathbf{q}_{12})$$

 $\langle \delta(\mathbf{k}_1)\delta(\mathbf{k}_2)\delta(\mathbf{k}_3)\rangle = (2\pi)^3 B(\mathbf{k}_1,\mathbf{k}_2,\mathbf{k}_3)\delta^D(\mathbf{k}_1+\mathbf{k}_2+\mathbf{k}_3)$

Complexity of Naive estimator

- To measure bispectrum we need to loop over $k_{1x}, k_{1y}, k_{1z}, k_{2x}, k_{2y}, k_{2z}$ (then, k₃ is determined from triangle condition)
- Complexity = $(N_{max})^6$

$$B(k_1, k_2, k_3) = \frac{V_f}{V_{(123)}^B (2\pi)^3}$$

from $(k_1, k_2, k_3) = (1, 1, 1)k_F$ to $(k_1, k_2, k_3) = (N_{max}, N_{max}, N_{max})k_F$,

 $\int_{k_1} d^3 q_1 \int_{k_2} d^3 q_2 \delta(\mathbf{q}_1) \delta(\mathbf{q}_2) \delta(-\mathbf{q}_{12})$

Roman's estimator

$$\begin{split} B(k_1,k_2,k_3) &= \frac{V_f}{V_{(123)}^B(2\pi)^3} \int_{k_1} d^3q_1 \int_{k_2} d^3q_2 \int_{k_3} d^3q_3 \delta(\mathbf{q}_1) \delta(\mathbf{q}_2) \delta(\mathbf{q}_3) \delta_D(\mathbf{q}_{123}) \\ &= \frac{V_f}{V_{(123)}^B(2\pi)^3} \int_{k_1} d^3q_1 \int_{k_2} d^3q_2 \int_{k_3} d^3q_3 \delta(\mathbf{q}_1) \delta(\mathbf{q}_2) \delta(\mathbf{q}_3) \int \frac{d^3x}{(2\pi)^3} e^{i\mathbf{x}\cdot\mathbf{q}_{123}} \\ &= \frac{V_f}{V_{(123)}^B(2\pi)^3} \int \frac{d^3x}{(2\pi)^3} \left(\int_{k_1} d^3q_1 \delta(\mathbf{q}_1) e^{i\mathbf{x}\cdot\mathbf{q}_1} \right) \left(\int_{k_2} d^3q_2 \delta(\mathbf{q}_2) e^{i\mathbf{x}\cdot\mathbf{q}_2} \right) \left(\int_{k_3} d^3q_3 \delta(\mathbf{q}_3) \delta(\mathbf{q}_3) e^{i\mathbf{x}\cdot\mathbf{q}_3} \right) \\ &= \frac{V_f}{V_{(123)}^B(2\pi)^3} \int \frac{d^3x}{(2\pi)^3} I_{k_1}(\mathbf{x}) I_{k_2}(\mathbf{x}) I_{k_3}(\mathbf{x}) \\ &= I_{k_i}(\mathbf{x}) = \int_{k_i} d^3q_1 \delta(\mathbf{q}) e^{i\mathbf{x}\cdot\mathbf{q}} = \int d^3q_1 \tilde{I}_{k_i}(\mathbf{q}) e^{i\mathbf{x}\cdot\mathbf{q}} \end{split}$$

Complexity of Roman's estimator

- To measure bispectrum we need to loop over k₁, k₂, k₃ and need to calculate the inner product of 3D matrices
- Complexity = $(N_{max})^6$

$$B(k_1, k_2, k_3) = \frac{V_f}{V_{(123)}^B (2\pi)}$$

from $(k_1, k_2, k_3) = (1, 1, 1)k_F$ to $(k_1, k_2, k_3) = (N_{max}, N_{max}, N_{max})k_F$,

 $\frac{1}{(2\pi)^3} \int \frac{d^3x}{(2\pi)^3} I_{k_1}(\mathbf{x}) I_{k_2}(\mathbf{x}) I_{k_3}(\mathbf{x})$

Yet, Roman's estimator is much faster!

- Loop is only for k_1, k_2, k_3 : much fewer computation
- Matrix inner product is much faster than irregular sampling of the matrix

$$B(k_1, k_2, k_3) = \frac{V_f}{V_{(123)}^B (2\pi)^3} \int_{k_1} d^3 q_1 \int_{k_2} d^3 q_2 \delta(\mathbf{q}_1) \delta(\mathbf{q}_2) \delta(-\mathbf{q}_{12})$$
$$B(k_1, k_2, k_3) = \frac{V_f}{V_{(123)}^B (2\pi)^3} \int \frac{d^3 x}{(2\pi)^3} I_{k_1}(\mathbf{x}) I_{k_2}(\mathbf{x}) I_{k_3}(\mathbf{x})$$

Memory requirement

- To get an unbiased bispectrum, $N_{mesh} > 3 N_{max}$ for each $I_{ki}(x)$, and we need N_{max} of them.
- We therefore need memory space for at least $N_{max}(N_{mesh})^3 > 27 (N_{max})^4$ numbers

• With single precision (Float32), already <u>27 GB for N_{max}=128</u>.

Naive parallelization of the estimator

- Naive parallelization : Run each $I_{ki}(x)$ on one CPU
- Why bad? product

$$B(k_1, k_2, k_3) = \frac{V_f}{V_{(123)}^B (2\pi)^3} \int \frac{d^3x}{(2\pi)^3} I_{k_1}(\mathbf{x}) I_{k_2}(\mathbf{x}) I_{k_3}(\mathbf{x})$$

We need to pull out the full 3D array to calculate the inner

Efficient parallelization

- Multiplication only done locally!
- Minimize the interCPU communication:
 - When FFT the last dimension
 - When reducing the sum

$$k_2, k_3) = \frac{V_f}{V_{(123)}^B (2\pi)^3} \int \frac{d^3 x}{(2\pi)^3} I_{k_1}(\mathbf{x}) I_{k_2}(\mathbf{x}) I_k$$

Efficient parallelization, result

C vs. Julia

Visualizing bispectrum $k_1 \ge k_2 \ge k_3$ **k**₃ 0.1 0.14 equilateral (Ki=K2=K3) 0.12 0.08 0.10 0.06 [*h*/Mpc] [h/Mpc] equine (ki=2k2=2k3) folded (ki=2k2=2k3) <u>~</u> 0.04 <u>ې</u> 0.06 0.02 0.04 0.02 $\begin{array}{c} 0.02 \\ 0.04 \\ 0.06 \\ 0.08 \\ 0.08 \\ 0.10 \\ 0.12 \\ 0.14 \end{array}$ **K**₂ squeezed $(k_1 = k_2 \gg k_3)$ 0.00 0.02 0.08 $0.02 \stackrel{0.04}{=} \stackrel{0.06}{=} \stackrel{0.08}{=} \stackrel{0.10}{=} \stackrel{0.12}{=} \stackrel{0.14}{=} \stackrel{0.02}{=} \stackrel{0.04}{=} \stackrel{0.06}{=} \stackrel{0.08}{=} \stackrel{0.10}{=} \stackrel{0.12}{=} \stackrel{0.14}{=} \stackrel{0.12}{=} \stackrel{0.14}{=} \stackrel{0.06}{=} \stackrel{0.08}{=} \stackrel{0.10}{=} \stackrel{0.12}{=} \stackrel{0.14}{=} \stackrel{0.04}{=} \stackrel{0.06}{=} \stackrel{0.08}{=} \stackrel{0.10}{=} \stackrel{0.10}{=} \stackrel{0.12}{=} \stackrel{0.14}{=} \stackrel{0.04}{=} \stackrel{0.06}{=} \stackrel{0.08}{=} \stackrel{0.10}{=} \stackrel{0.10}{=} \stackrel{0.12}{=} \stackrel{0.14}{=} \stackrel{0.04}{=} \stackrel{0.06}{=} \stackrel{0.08}{=} \stackrel{0.08}{=} \stackrel{0.10}{=} \stackrel{0.10}{=} \stackrel{0.12}{=} \stackrel{0.14}{=} \stackrel{0.14}{=} \stackrel{0.04}{=} \stackrel{0.06}{=} \stackrel{0.08}{=} \stackrel{0.10}{=} \stackrel{0.10}{=} \stackrel{0.10}{=} \stackrel{0.12}{=} \stackrel{0.14}{=} \stackrel{0.04}{=} \stackrel{0.06}{=} \stackrel{0.08}{=} \stackrel{0.08}{=} \stackrel{0.10}{=} \stackrel{0.10}{=} \stackrel{0.12}{=} \stackrel{0.14}{=} \stackrel{0.14}{=} \stackrel{0.04}{=} \stackrel{0.06}{=} \stackrel{0.08}{=} \stackrel{0.10}{=} \stackrel{0.10}{=} \stackrel{0.12}{=} \stackrel{0.14}{=} \stackrel{0.14}{=} \stackrel{0.04}{=} \stackrel{0.06}{=} \stackrel{0.06}{=} \stackrel{0.08}{=} \stackrel{0.10}{=} \stackrel{0.10}{=} \stackrel{0.14}{=} \stackrel{0.$ 0.04 0.06 0.06 0.04 0.08 0.02 0.1 0 KI k₂ [h/Mpc] k₁ [h/Mpc]

dlnP/dlnk > 0

The slope of power spectrum dlnP/dlnk ≲ 0

Visualizing bispectrum $k_1 \ge k_2 \ge k_3$

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Bispectrum $B(k_1, k_2, k_3)$

Linear SPT N-body

total number of triangles. Spikes at $k_1 = k_2 + k_3$

Number of triangles

Using the same estimator, but with $\delta = 1$, we can calculate the

Why stop at triangle? Here's the angle averaged Trispectrum!

Number of quadrilaterals

Number of pentagons

Why stop at trispectrum? Here's the angle averaged quadspectrum!

Number of hexagons

Why stop at quadspectrum? Here's the angle averaged pentaspectrum!

Application: polyspectra with GridSF

x [h⁻¹Mpc] Taruya, Nishimich, Jeong (2018)

_			

Conclusion

- We present an efficient parallel algorithm for calculating higher-order polyspectra
- requirement of Scoccimarro estimator, and the parallel version is quite fast!
- the higher-order polyspectra!

• With the parallelization, we can overcome the high memory

• Applying it to GridSPT, we can calculate the SPT prediction for

